Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 66(19)2021 09 28.
Article in English | MEDLINE | ID: mdl-34507306

ABSTRACT

While cancer therapy with protons and C-ions is continuously spreading, in the near future patients will be also treated with He-ions which, in comparison to photons, combine the higher precision of protons with the higher relative biological effectiveness (RBE) of C-ions. Similarly to C-ions, also for He-ions the RBE variation along the beam must be known as precisely as possible, especially for active beam delivery systems. In this framework the BIANCA biophysical model, which has already been applied to calculate the RBE along proton and C-ion beams, was extended to4He-ions and, following interface with the FLUKA code, was benchmarked against cell survival data on CHO normal cells and Renca tumour cells irradiated at different positions along therapeutic-like4He-ion beams at the Heidelberg Ion-beam Therapy centre, where the first He-ion patient will be treated soon. Very good agreement between simulations and data was obtained, showing that BIANCA can now be used to predict RBE following irradiation with all ion types that are currently used, or will be used soon, for hadrontherapy. Thanks to the development of a reference simulation database describing V79 cell survival for ion and photon irradiation, these predictions can be cell-type specific because analogous databases can be produced, in principle, for any cell line. Furthermore, survival data on CHO cells irradiated by a He-3 beam were reproduced to compare the biophysical properties of He-4 and He-3 beams, which is currently an open question. This comparison showed that, at the same depth, He-4 beams tend to have a higher RBE with respect to He-3 beams, and that this difference is also modulated by the considered physical dose, as well as the cell radiosensitivity. However, at least for the considered cases, no significant difference was found for the ratio between the RBE-weighted dose in the SOBP and that in the entrance plateau.


Subject(s)
Neoplasms , Proton Therapy , Animals , Cricetinae , Cricetulus , Humans , Neoplasms/radiotherapy , Protons , Relative Biological Effectiveness
2.
Phys Med ; 80: 342-346, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33271390

ABSTRACT

In proton therapy, secondary fragments are created in nuclear interactions of the beam with the target nuclei. The secondary fragments have low kinetic energies and high atomic numbers as compared to primary protons. Fragments have a high LET and deposit all their energy close to the generation point. For their characteristics, secondary fragments can alter the dose distribution and lead to an increase of RBE for the same delivered physical dose. Moreover, the radiobiological impact of target fragmentation is significant mostly in the region before the Bragg peak, where generally healthy tissues are present, and immediately after Bragg peak. Considering the high biological impact of those particles, especially in the case of healthy tissues or organs at risk, the inclusion of target fragmentation processes in the dose calculation of a treatment planning system can be relevant to improve the treatment accuracy and for this reason it is one of the major tasks of the MoVe IT project. In this study, Monte Carlo simulations were employed to fully characterize the mixed radiation field generated by target fragmentation in proton therapy. The dose averaged LET has been evaluated in case of a Spread Out Bragg Peak (SOBP). Starting from LET distribution, RBE has been evaluated with two different phenomenological models. In order to characterize the mixed radiation field, the production cross section has been evaluated by means of the FLUKA code. The future development of present work is to generate a MC database of fragments fluence to be included in TPS.


Subject(s)
Proton Therapy , Computer Simulation , Monte Carlo Method , Protons , Relative Biological Effectiveness
3.
Sci Rep ; 10(1): 20735, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33244102

ABSTRACT

The high dose conformity and healthy tissue sparing achievable in Particle Therapy when using C ions calls for safety factors in treatment planning, to prevent the tumor under-dosage related to the possible occurrence of inter-fractional morphological changes during a treatment. This limitation could be overcome by a range monitor, still missing in clinical routine, capable of providing on-line feedback. The Dose Profiler (DP) is a detector developed within the INnovative Solution for In-beam Dosimetry in hadronthErapy (INSIDE) collaboration for the monitoring of carbon ion treatments at the CNAO facility (Centro Nazionale di Adroterapia Oncologica) exploiting the detection of charged secondary fragments that escape from the patient. The DP capability to detect inter-fractional changes is demonstrated by comparing the obtained fragment emission maps in different fractions of the treatments enrolled in the first ever clinical trial of such a monitoring system, performed at CNAO. The case of a CNAO patient that underwent a significant morphological change is presented in detail, focusing on the implications that can be drawn for the achievable inter-fractional monitoring DP sensitivity in real clinical conditions. The results have been cross-checked against a simulation study.


Subject(s)
Carbon/therapeutic use , Ions/therapeutic use , Radiotherapy Planning, Computer-Assisted/methods , Clinical Trials as Topic , Humans , Radiometry/methods
4.
Phys Med ; 65: 84-93, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31437603

ABSTRACT

Particle therapy (PT) can exploit heavy ions (such as He, C or O) to enhance the treatment efficacy, profiting from the increased Relative Biological Effectiveness and Oxygen Enhancement Ratio of these projectiles with respect to proton beams. To maximise the gain in tumor control probability a precise online monitoring of the dose release is needed, avoiding unnecessary large safety margins surroundings the tumor volume accounting for possible patient mispositioning or morphological changes with respect to the initial CT scan. The Dose Profiler (DP) detector, presented in this manuscript, is a scintillating fibres tracker of charged secondary particles (mainly protons) that will be operating during the treatment, allowing for an online range monitoring. Such monitoring technique is particularly promising in the context of heavy ions PT, in which the precision achievable by other techniques based on secondary photons detection is limited by the environmental background during the beam delivery. Developed and built at the SBAI department of "La Sapienza", within the INSIDE collaboration and as part of a Centro Fermi flagship project, the DP is a tracker detector specifically designed and planned for clinical applications inside a PT treatment room. The DP operation in clinical like conditions has been tested with the proton and carbon ions beams of Trento proton-therapy center and of the CNAO facility. In this contribution the detector performances are presented, in the context of the carbon ions monitoring clinical trial that is about to start at the CNAO centre.


Subject(s)
Heavy Ion Radiotherapy/instrumentation , Radiometry/instrumentation , Humans , Online Systems , Quality Control
5.
Phys Med Biol ; 62(15): 6290-6303, 2017 Jul 17.
Article in English | MEDLINE | ID: mdl-28714456

ABSTRACT

We consider the evaluation of lateral spread distributions of charged particle beams at therapeutic energies, due to an absorber in the form of a homogeneous slab or of a stack. We show that the Molière theory has the same degree of flexibility as the Fermi-Eyges, but is much more accurate and does not present particular computing difficulties with the energy loss formula we have employed. It is also shown that the non-Gaussian shape of the projected one dimensional (1D) distributions is not a complication for passing from the projected to the spatial two-dimensional (2D) distribution, if one assumes circular symmetry. All the calculations are compared with the results of the FLUKA code. The nuclear interaction is not considered here, because it is outside of the scope of this work.


Subject(s)
Electrons , Heavy Ion Radiotherapy/methods , Models, Theoretical , Radiotherapy Planning, Computer-Assisted/methods , Scattering, Radiation , Humans , Radiotherapy Dosage
6.
Phys Med ; 40: 51-58, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28716542

ABSTRACT

PURPOSE: We investigate the possibility to improve the accuracy of the lateral dose profile for 4He beams with a novel approach, by extending an already validated model for proton beams to heavier ions. METHODS: The full Molière theory for the Coulomb multiple scattering is applied to the case of 4He beams, with a complete separation of the electromagnetic and of the nuclear contributions in the calculation of the total dose. The latter is described with only three free parameters. RESULTS: The accuracy of the results compared with Monte Carlo predictions already validated with experimental data is comparable with other studies at low energy, but improves by a factor 2 at high energy. In addition the found solution is more stable with respect to (multi-) Gaussian and other parameterizations. This result makes this method of interest for applications to Treatment Planning Systems (TPS) in ion beam therapy. CONCLUSIONS: We propose a model, named MONETα (MOdel of ioN dosE for Therapy for α), for the calculation of the lateral dose of 4He beams in water that allows fast and accurate dose calculations by requiring a small data base of parameters as input.


Subject(s)
Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Water , Algorithms , Models, Theoretical , Monte Carlo Method , Normal Distribution , Protons
7.
Phys Med ; 38: 66-75, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28610699

ABSTRACT

PURPOSE: The accurate and fast calculation of the dose in proton radiation therapy is an essential ingredient for successful treatments. We propose a novel approach with a minimal number of parameters. METHODS: The approach is based on the exact calculation of the electromagnetic part of the interaction, namely the Molière theory of the multiple Coulomb scattering for the transversal 1D projection and the Bethe-Bloch formula for the longitudinal stopping power profile, including a gaussian energy straggling. To this e.m. contribution the nuclear proton-nucleus interaction is added with a simple two-parameter model. Then, the non gaussian lateral profile is used to calculate the radial dose distribution with a method that assumes the cylindrical symmetry of the distribution. RESULTS: The results, obtained with a fast C++ based computational code called MONET (MOdel of ioN dosE for Therapy), are in very good agreement with the FLUKA MC code, within a few percent in the worst case. CONCLUSIONS: This study provides a new tool for fast dose calculation or verification, possibly for clinical use.


Subject(s)
Protons , Radiotherapy Dosage , Scattering, Radiation , Water , Algorithms , Models, Statistical , Monte Carlo Method , Normal Distribution
8.
Phys Med Biol ; 61(4): N102-17, 2016 Feb 21.
Article in English | MEDLINE | ID: mdl-26808380

ABSTRACT

A pencil beam model for the calculation of the lateral scattering in water of protons for any therapeutic energy and depth is presented. It is based on the full Molière theory, taking into account the energy loss and the effects of mixtures and compounds. Concerning the electromagnetic part, the model has no free parameters and is in very good agreement with the FLUKA Monte Carlo (MC) code. The effects of the nuclear interactions are parametrized with a two-parameter tail function, adjusted on MC data calculated with FLUKA. The model, after the convolution with the beam and the detector response, is in agreement with recent proton data in water from HIT. The model gives results with the same accuracy of the MC codes based on Molière theory, with a much shorter computing time.


Subject(s)
Algorithms , Proton Therapy/methods , Protons , Radiotherapy Planning, Computer-Assisted/methods , Scattering, Radiation , Radiotherapy Dosage
9.
Phys Med ; 31(5): 484-92, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26032003

ABSTRACT

PURPOSE: The accurate evaluation of the lateral dose profile is an important issue in the field of proton radiation therapy. The beam spread, due to Multiple Coulomb Scattering (MCS), is described by the Molière's theory. To take into account also the contribution of nuclear interactions, modern Treatment Planning Systems (TPSs) generally approximate the dose profiles by a sum of Gaussian functions. In this paper we have compared different parametrizations for the lateral dose profile of protons in water for therapeutical energies: the goal is to improve the performances of the actual treatment planning. METHODS: We have simulated typical dose profiles at the CNAO (Centro Nazionale di Adroterapia Oncologica) beamline with the FLUKA code and validated them with data taken at CNAO considering different energies and depths. We then performed best fits of the lateral dose profiles for different functions using ROOT and MINUIT. RESULTS: The accuracy of the best fits was analyzed by evaluating the reduced χ(2), the number of free parameters of the functions and the calculation time. The best results were obtained with the triple Gaussian and double Gaussian Lorentz-Cauchy functions which have 6 parameters, but good results were also obtained with the so called Gauss-Rutherford function which has only 4 parameters. CONCLUSIONS: The comparison of the studied functions with accurate and validated Monte Carlo calculations and with experimental data from CNAO lead us to propose an original parametrization, the Gauss-Rutherford function, to describe the lateral dose profiles of proton beams.


Subject(s)
Proton Therapy , Radiation Dosage , Radiotherapy Planning, Computer-Assisted/methods , Normal Distribution , Radiotherapy Dosage , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...