Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 75(1): 63-78, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30094905

ABSTRACT

BACKGROUND: The route and rate of degradation of thiamethoxam in the laboratory and field was investigated. The effect of dark incubation versus light/dark cycles, seed treatment versus spray, and watering-in for spray application was explored in side-by-side trials. RESULTS: Geometric mean DT50 values were 75.4 days in OECD307 studies, and 18.3 (spray) and 16.5 (seed treatment) days in the field. In laboratory soil core studies DT50 values were 24.9 to 43.5 days, with the lowest value from the light/dark incubated soil core. Mean clothianidin formation was 19.7% applied thiamethoxam [mol/mol] in OECD307 studies and 17.5 (spray) and 3.4% (seed) in field trials. CONCLUSION: Soil DT50 values decreased with increasingly realistic tests (laboratory OECD307 to soil cores to soil cores with a light/dark cycle to field trials). The majority of the differences were associated with the soil treatment in OECD307 studies which destroys soil structure and retards the degradation rate; and from the impact on soil pore water movement in light/dark conditions. Degradation rates in the field were comparable between spray application and seed treatments. Maximum clothianidin concentrations were four-fold lower for seed treatments than for spray application in field studies. © 2018 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Insecticides/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Thiamethoxam/chemistry
2.
Environ Pollut ; 242(Pt B): 1444-1457, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30142560

ABSTRACT

Thiamethoxam is a neonicotinoid insecticide used widely in agriculture to control a broad spectrum of insect pests. To assess potential risks from this compound to non-target aquatic organisms, an outdoor mesocosm study was performed. Mesocosms (1300 L) were treated once with a formulated product with the active substance (a.s.) thiamethoxam at nominal concentrations of 1 (n = 3), 3 (n = 3), 10 (n = 4), 30 (n = 4), and 100 (n = 2) µg a.s./L, plus untreated controls (n = 4). Primary producers (phytoplankton), zooplankton, and macroinvertebrates were monitored for up to 93 days following treatment. Thiamethoxam was observed to have a water column dissipation half-life (DT50) of ≤1.6-5.2 days in the mesocosms. Community-based principal response curve analysis detected no treatment effects for phytoplankton, zooplankton, emergent insects, and macroinvertebrates, indicating a lack of direct and indirect effects. A number of statistically significant differences from controls were detected for individual phytoplankton and zooplankton species abundances, but these were not considered to be treatment-related due to their transient nature and lack of concentration-response. After application of 30 µg a.s./L, slight temporary effects on Asellus aquaticus could not be excluded. At 100 µg a.s./L, there was an effect with no clear recovery of Asellus observed, likely due to their inability to recolonize these isolated test systems. A statistically significant but transient reduction in the emergence of chironomids by day 23 at the 100 µg a.s./L treatment was observed and possibly related to direct toxicity from thiamethoxam on larval stages. Therefore, a conservative study specific No Observed Ecological Adverse Effect Concentration (NOEAEC) is proposed to be 30 µg a.s./L. Overall, based on current concentrations of thiamethoxam detected in North American surface waters (typically <0.4 µg/L), there is low likelihood of direct or indirect effects from a pulsed exposure on primary producers, zooplankton, and macroinvertebrates, including insects, as monitored in this study.


Subject(s)
Insecticides/toxicity , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Oxazines/toxicity , Thiazoles/toxicity , Water Pollutants, Chemical/toxicity , Animals , Aquatic Organisms/drug effects , Food Chain , Fresh Water , Invertebrates/drug effects , Larva/drug effects , Phytoplankton/drug effects , Thiamethoxam , Zooplankton/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...