Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Virol ; 87(3): 1779-88, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23175378

ABSTRACT

Coinfection with Plasmodium falciparum malaria and Epstein-Barr virus (EBV) is a major risk factor for endemic Burkitt lymphoma (eBL), still one of the most prevalent pediatric cancers in equatorial Africa. Although malaria infection has been associated with immunosuppression, the precise mechanisms that contribute to EBV-associated lymphomagenesis remain unclear. In this study, we used polychromatic flow cytometry to characterize CD8(+) T-cell subsets specific for EBV-derived lytic (BMFL1 and BRLF1) and latent (LMP1, LMP2, and EBNA3C) antigens in individuals with divergent malaria exposure. No malaria-associated differences in EBV-specific CD8(+) T-cell frequencies were observed. However, based on a multidimensional analysis of CD45RO, CD27, CCR7, CD127, CD57, and PD-1 expression, we found that individuals living in regions with intense and perennial (holoendemic) malaria transmission harbored more differentiated EBV-specific CD8(+) T-cell populations that contained fewer central memory cells than individuals living in regions with little or no (hypoendemic) malaria. This profile shift was most marked for EBV-specific CD8(+) T-cell populations that targeted latent antigens. Importantly, malaria exposure did not skew the phenotypic properties of either cytomegalovirus (CMV)-specific CD8(+) T cells or the global CD8(+) memory T-cell pool. These observations define a malaria-associated aberration localized to the EBV-specific CD8(+) T-cell compartment that illuminates the etiology of eBL.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Coinfection/immunology , Epstein-Barr Virus Infections/immunology , Herpesvirus 4, Human/pathogenicity , Malaria, Falciparum/epidemiology , Malaria, Falciparum/immunology , Plasmodium falciparum/pathogenicity , Africa/epidemiology , Child , Child, Preschool , Epstein-Barr Virus Infections/complications , Flow Cytometry , Humans , Infant , Malaria, Falciparum/complications , T-Lymphocyte Subsets/immunology
2.
PLoS One ; 6(9): e24852, 2011.
Article in English | MEDLINE | ID: mdl-21935482

ABSTRACT

Naturally acquired immunity to Plasmodium falciparum malaria in malaria holoendemic areas is characterized by the gradual, age-related development of protection against high-density parasitemia and clinical malaria. Animal studies, and less commonly, observations of humans with malaria, suggest that T-cell responses are important in the development and maintenance of this immunity, which is mediated primarily by antibodies that slow repeated cycles of merozoites through erythrocytes. To advance our rather limited knowledge on human T-cell immunity to blood stage malaria infection, we evaluated CD4 and CD8 T-cell effector memory subset responses to the 42 kDa C-terminal fragment of Merozoite Surface Protein 1 (MSP1(42)), a malaria vaccine candidate, by 49 healthy 0.5 to ≥18 year old residents of a holoendemic area in western Kenya. The proportion of individuals with peripheral blood mononuclear cell MSP1(42) driven IFN-γ ELISPOT responses increased from 20% (2/20) among 0.5-1 year old children to 90% (9/10) of adults ≥18 years (P = 0.01); parallel increases in the magnitude of IFN-γ responses were observed across all age groups (0.5, 1, 2, 5 and ≥18 years, P = 0.001). Less than 1% of total CD4 and CD8 T-cells from both children and adults produced IFN-γ in response to MSP1(42). However, adults had higher proportions of MSP1(42) driven IFN-γ secreting CD4 and CD8 effector memory (CD45RA(-) CD62L(-)) T-cells than children (CD4: 50.9% vs. 28.8%, P = 0.036; CD8: 52.1% vs. 18.3%, respectively P = 0.009). In contrast, MSP1(42) driven IFN-γ secreting naïve-like, transitional (CD45RA(+) CD62L(+)) CD4 and CD8 cells were the predominant T-cell subset among children with significantly fewer of these cells in adults (CD4: 34.9% vs. 5.1%, P = 0.002; CD8: 47.0% vs. 20.5%, respectively, P = 0.030). These data support the concept that meaningful age-related differences exist in the quality of T-cell immunity to malaria antigens such as MSP1.


Subject(s)
Merozoite Surface Protein 1/immunology , Plasmodium falciparum/immunology , T-Lymphocyte Subsets/immunology , Adolescent , Adult , Age Factors , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay , Female , Humans , Infant , Interferon-gamma/immunology , Interferon-gamma/metabolism , Kenya , Leukocytes, Mononuclear/immunology , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...