Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biomimetics (Basel) ; 8(7)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37999161

ABSTRACT

New composite hydrogels (CH) based on bacterial cellulose (BC) and poly-1-vinyl-1,2,4-triazole (PVT) doped with orthophosphoric acid (oPA), presenting interpenetrating polymeric networks (IPN), have been synthesized. The mesoscopic study of the supramolecular structure (SMS) of both native cellulose, produced by the strain Komagataeibacter rhaeticus, and the CH based on BC and containing PVT/oPA complex were carried out in a wide range of momentum transfer using ultra- and classical small-angle neutron scattering techniques. The two SMS hierarchical levels were revealed from 1.6 nm to 2.5 µm for the objects under investigation. In addition, it was shown that the native BC had a correlation peak on the small-angle scattering curves at 0.00124 Å-1, with the correlation length ξ being equal to ca. 510 nm. This motive was also retained in the IPN. The data obtained allowed the estimation of the fractal dimensions and ranges of self-similarity and gave new information about the BC mesostructure and its CH. Furthermore, we revealed them to be in coincidence with Brown's BC model, which was earlier supported by Fink's results.

2.
Int J Mol Sci ; 25(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38203229

ABSTRACT

Soluble polysilsesquioxane containing side-chain phthalimide groups (PSQ-PhI) was synthesized via a solvent- and catalyst-free hydrolytic polycondensation reaction using 2-[3-(triethoxysilyl)propyl]-1H-isoindole-1,3(2H)-dione. The composition and structure of polysilsesquioxane was confirmed via 1H, 13C, and 29Si NMR spectroscopy, Fourier transform infrared spectroscopy, gel permeation chromatography, thermogravimetric analysis, dynamic light scattering, X-ray diffraction analysis, and elemental analysis. The synthesized silsesquioxane showed a monomodal molecular weight distribution. The average molecular weight of polysilsesquioxane is 11,200 Da, and the polydispersity index is 1.10. 29Si NMR analysis showed a half-peak width w1/2 3.1 ppm at δ -68.3, which corresponds to the PhI(CH2)3SiO3/2 unit and indicates an ordered structure in the polymer, with some defects caused by the presence of uncondensed silanol groups. PSQ-PhI showed good thermal stability (Td5% decomposition at 345 °C). The polysilsesquioxane-based coating was transparent in the visible region.


Subject(s)
Isoindoles , Organosilicon Compounds , Phthalimides , Chromatography, Gel
3.
Polymers (Basel) ; 14(10)2022 May 16.
Article in English | MEDLINE | ID: mdl-35631911

ABSTRACT

Narrow dispersed poly(1-vinyl-1,2,4-triazole) (PVT) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of 1-vinyl-1,2,4-triazole (VT). AIBN as the initiator and dithiocarbamates, xanthates, and trithiocarbonates as the chain transfer agents (CTA) were used. Dithiocarbamates proved to be the most efficient in VT polymerization. Gel permeation chromatography was used to determine the molecular weight distribution and polydispersity of the synthesized polymers. The presence of the CTA stabilizing and leaving groups in the PVT was confirmed by 1H and 13C NMR spectroscopy. The linear dependence of the degree of polymerization on time confirms the conduct of radical polymerization in a controlled mode. The VT conversion was over 98% and the PVT number average molecular weight ranged from 11 to 61 kDa. The polydispersity of the synthesized polymers reached 1.16. The occurrence of the controlled radical polymerization was confirmed by monitoring the degree of polymerization over time.

4.
Polymers (Basel) ; 13(23)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34883738

ABSTRACT

Metal-polymer nanocomposite polyvinyltriazole-silver nanoparticles were obtained using one-pot synthesis in irradiated aqueous solutions of 1-vinyl-1,2,4-triazole (VT) and silver ions. Gel permeation chromatography data show that upon radiation initiation, the molecular weight of poly(1-vinyl-1,2,4-triazole) increases with increasing monomer concentration. To study the kinetics of polymerization and the features of the radiation-chemical formation of nanoparticles, UV-Vis spectroscopy was used. TEM images show a relatively small average size of the forming nanoparticles (2-3 nm) and a narrow size distribution, which shows the effective stabilization of nanoparticles by triazole substituents at a molar ratio of VT and silver ions of 25/1. The addition of ethyl alcohol was used to increase the efficiency of synthesis and suppress the crosslinking of macromolecules in solution. The results of the work show that aqueous-alcoholic solutions of 1 wt.% VT can be used to obtain soluble nanocomposite materials. 10 wt.% monomer solutions have prospects for use in the preparation of polymer gels filled with nanoparticles.

5.
Polymers (Basel) ; 13(19)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34641028

ABSTRACT

New stable nanocomposites with copper nanoparticles (CuNPs) in a polymer matrix have been synthesized by green chemistry. Non-toxic poly-N-vinylimidazole was used as a stabilizing polymer matrix and ascorbic acid was used as a reducing agent. The polymer CuNPs nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV) spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic absorption spectroscopy (AAS), and thermogravimetric analysis (TGA). It was shown, using the dynamic light scattering (DLS) method, that the hydrodynamic diameters of nanocomposites depend on the CuNPs content and are in an associated state in an aqueous medium. The copper content in nanocomposites ranges from 1.8 to 12.3% wt. The obtained polymer nanocomposites consist of isolated copper nanoparticles with a diameter of 2 to 20 nm with a spherical shape.

6.
Nanomaterials (Basel) ; 12(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35009966

ABSTRACT

A new original copper nanocomposite based on poly-N-vinylimidazole was synthesized and characterized by a complex of modern physicochemical and biological methods. The low cytotoxicity of the copper nanocomposite in relation to the cultured hepatocyte cells was found. The possibility to involve the copper from the nanocomposite in the functioning of the copper-dependent enzyme systems was evaluated during the incubation of the hepatocyte culture with this nanocomposite introduced to the nutrient medium. The synthesized new water-soluble copper-containing nanocomposite is promising for biotechnological and biomedical research as a new non-toxic hydrophilic preparation that is allowed to regulate the work of key enzymes involved in energy metabolism and antioxidant protection as well as potentially serving as an additional source of copper.

7.
Nanomaterials (Basel) ; 10(8)2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32731519

ABSTRACT

Novel silver/poly-1-vinyl-1,2,4-triazole nanocomposite materials-possessing antimicrobial activity against Gram-positive and Gram-negative bacteria-have been synthesized and characterized in the solid state and aqueous solution by complex of modern physical-chemical and biologic methods. TEM-monitoring has revealed the main stages of microbial cell (E. coli) destruction by novel nanocomposite. The concept of direct polarized destruction of microbes by nanosilver proposed by the authors allows the relationship between physicochemical and antimicrobial properties of novel nanocomposites. At the same time, it was shown that the nanocomposite was nontoxic to the fibroblast cell culture. Thus, the synthesized nanocomposite combining antibacterial activity against Gram-positive and Gram-negative bacteria as well as the absence of toxic effects on mammalian cells is a promising material for the development of catheters, coatings for medical devices.

8.
Int J Nanomedicine ; 11: 1295-304, 2016.
Article in English | MEDLINE | ID: mdl-27099492

ABSTRACT

New nontoxic hydrophilic nanocomposites containing metallic silver nanoparticles (AgNPs) in a polymer matrix were synthesized by the chemical reduction of silver ions in an aqueous medium. A new nontoxic water soluble copolymer of 1-vinyl-1,2,4-triazole and N-vinylpyrrolidone synthesized by free radical-initiated polymerization was used as a stabilizing agent. Transmission electron microscopy, scanning electron microscopy, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, atomic absorption, and thermogravimetric analysis were used to characterize polymeric AgNPs nanocomposites. The results showed that the diameter of the synthesized AgNPs ranged from 2 to 6 nm. The toxicity of the initial copolymer of 1-vinyl-1,2,4-triazole and N-vinylpyrrolidone and its nanocomposite with AgNPs was found to be more than 5,000 mg/kg. The synthesized AgNP polymeric nanocomposite showed significant antimicrobial activity against different strains of Gram-negative and -positive bacteria. The minimum inhibitory concentrations suppressing the growth of the microorganisms ranged from 0.5 to 8 µg/mL and the minimum bactericidal concentrations ranged from 0.5 to 16 µg/mL. The fabricated AgNP nanocomposites are promising materials for the design of novel nontoxic hydrophilic antiseptics and antimicrobial components for medical purposes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Metal Nanoparticles/administration & dosage , Nanocomposites/chemistry , Pyrrolidinones/chemistry , Silver/administration & dosage , Triazoles/chemistry , Animals , Anti-Bacterial Agents/chemistry , Female , Male , Metal Nanoparticles/chemistry , Mice , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Polymers/administration & dosage , Polymers/chemistry , Silver/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
9.
Int J Nanomedicine ; 9: 1883-9, 2014.
Article in English | MEDLINE | ID: mdl-24790430

ABSTRACT

New water-soluble nontoxic nanocomposites of nanosized silver particles in a polymer matrix were synthesized by a green chemistry method. Nontoxic poly(1-vinyl-1,2,4-triazole) was used as a stabilizing precursor agent in aqueous medium. Glucose and dimethyl sulfoxide were used as the silver ion-reducing agents to yield silver nanoparticles 2-26 nm and 2-8 nm in size, respectively. The nanocomposites were characterized by transmission electron microscopy, ultraviolet-visible and Fourier transform infrared spectroscopy, X-ray diffraction, atomic absorption, and thermogravimetric data analysis. The nanocomposites showed strong antimicrobial activity against Gram-negative and Gram-positive bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Physiological Phenomena/drug effects , Nanocomposites/administration & dosage , Silver/chemistry , Silver/pharmacology , Triazoles/chemistry , Water/chemistry , Anti-Bacterial Agents/chemical synthesis , Cell Survival/drug effects , Drug Compounding/methods , Green Chemistry Technology/methods , Materials Testing , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...