Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 28(25): 255502, 2017 Jun 23.
Article in English | MEDLINE | ID: mdl-28561009

ABSTRACT

A low-cost method for carbon nanotubes (CNTs) network production from solutions on flexible polyethylene naphthalate substrates has been adopted to prepare high quality and well characterized SWCNT bundle layers to be used as the active layer in chemiresistor gas sensors. Two types of SWCNTs have been tested: pristine SWCNTs, deposited from a surfactant solution, and covalently functionalized SWCNTs, deposited from a dimethyl-acetamide solution. The humidity effects on the sensitivity of the SWCNTs network to NH3 have been investigated. The results show that relative humidity favors the response to NH3, confirming recent theoretical predictions. The COOH-functionalized sample displays the largest response owing to both its hydrophilic nature, favoring the interaction with H2O molecules, and its largest surface area. Compared to data available in the literature, the present sensors display a remarkable sensitivity well below the ppm range, which makes them quite promising for environmental and medical applications, where NH3 concentrations (mostly of the order of tens of ppb) have to be detected.

2.
Phys Rev Lett ; 109(18): 183201, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-23215276

ABSTRACT

The influence of quantum effects on the processes of initiation of combustion and detonation of hydrogen and acetylene near the low-temperature limits at elevated pressures is analyzed. A theoretical consideration which allows quantification of the quantum corrections to the rate constants of endothermic reactions associated with an increase in the high-energy tail of the equilibrium momentum distribution function at high pressures is presented. This quantum effect is caused by a manifestation of the principle of uncertainty for the energy of the colliding particles at a high frequency of collisions. It is shown that significant deviations of experimentally observed ignition and detonation delay time from the predictions of kinetic calculations are quite well described by the proposed quantum corrections. This general mechanism should be considered in the safety problem with emergency emissions of hydrogen at nuclear power stations, as well as problems of the safe production and storage of hydrogen and acetylene, which have a fundamental importance for industry and power engineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...