Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38824470

ABSTRACT

PURPOSE: Currently, the intra-operative visualization of vessels during endovascular aneurysm repair (EVAR) relies on contrast-based imaging modalities. Moreover, traditional image fusion techniques lack a continuous and automatic update of the vessel configuration, which changes due to the insertion of stiff guidewires. The purpose of this work is to develop and evaluate a novel approach to improve image fusion, that takes into account the deformations, combining electromagnetic (EM) tracking technology and finite element modeling (FEM). METHODS: To assess whether EM tracking can improve the prediction of the numerical simulations, a patient-specific model of abdominal aorta was segmented and manufactured. A database of simulations with different insertion angles was created. Then, an ad hoc sensorized tool with three embedded EM sensors was designed, enabling tracking of the sensors' positions during the insertion phase. Finally, the corresponding cone beam computed tomography (CBCT) images were acquired and processed to obtain the ground truth aortic deformations of the manufactured model. RESULTS: Among the simulations in the database, the one minimizing the in silico versus in vitro discrepancy in terms of sensors' positions gave the most accurate aortic displacement results. CONCLUSIONS: The proposed approach suggests that the EM tracking technology could be used not only to follow the tool, but also to minimize the error in the predicted aortic roadmap, thus paving the way for a safer EVAR navigation.

2.
Front Physiol ; 14: 1098867, 2023.
Article in English | MEDLINE | ID: mdl-37492644

ABSTRACT

Introduction and aims: During an Endovascular Aneurysm Repair (EVAR) procedure a stiff guidewire is inserted from the iliac arteries. This induces significant deformations on the vasculature, thus, affecting the pre-operative planning, and the accuracy of image fusion. The aim of the present work is to predict the guidewire induced deformations using a finite element approach validated through experiments with patient-specific additive manufactured models. The numerical approach herein developed could improve the pre-operative planning and the intra-operative navigation. Material and methods: The physical models used for the experiments in the hybrid operating room, were manufactured from the segmentations of pre-operative Computed Tomography (CT) angiographies. The finite element analyses (FEA) were performed with LS-DYNA Explicit. The material properties used in finite element analyses were obtained by uniaxial tensile tests. The experimental deformed configurations of the aorta were compared to those obtained from FEA. Three models, obtained from Computed Tomography acquisitions, were investigated in the present work: A) without intraluminal thrombus (ILT), B) with ILT, C) with ILT and calcifications. Results and discussion: A good agreement was found between the experimental and the computational studies. The average error between the final in vitro vs. in silico aortic configurations, i.e., when the guidewire is fully inserted, are equal to 1.17, 1.22 and 1.40 mm, respectively, for Models A, B and C. The increasing trend in values of deformations from Model A to Model C was noticed both experimentally and numerically. The presented validated computational approach in combination with a tracking technology of the endovascular devices may be used to obtain the intra-operative configuration of the vessels and devices prior to the procedure, thus limiting the radiation exposure and the contrast agent dose.

3.
Ann Biomed Eng ; 49(2): 627-641, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32804291

ABSTRACT

Congenital bicuspid aortic valve (BAV) consists of two fused cusps and represents a major risk factor for calcific valvular stenosis. Herein, a fully coupled fluid-structure interaction (FSI) BAV model was developed from patient-specific magnetic resonance imaging (MRI) and compared against in vivo 4-dimensional flow MRI (4D Flow). FSI simulation compared well with 4D Flow, confirming direction and magnitude of the flow jet impinging onto the aortic wall as well as location and extension of secondary flows and vortices developing at systole: the systolic flow jet originating from an elliptical 1.6 cm2 orifice reached a peak velocity of 252.2 cm/s, 0.6% lower than 4D Flow, progressively impinging on the ascending aorta convexity. The FSI model predicted a peak flow rate of 22.4 L/min, 6.7% higher than 4D Flow, and provided BAV leaflets mechanical and flow-induced shear stresses, not directly attainable from MRI. At systole, the ventricular side of the non-fused leaflet revealed the highest wall shear stress (WSS) average magnitude, up to 14.6 Pa along the free margin, with WSS progressively decreasing towards the belly. During diastole, the aortic side of the fused leaflet exhibited the highest diastolic maximum principal stress, up to 322 kPa within the attachment region. Systematic comparison with ground-truth non-invasive MRI can improve the computational model ability to reproduce native BAV hemodynamics and biomechanical response more realistically, and shed light on their role in BAV patients' risk for developing complications; this approach may further contribute to the validation of advanced FSI simulations designed to assess BAV biomechanics.


Subject(s)
Bicuspid Aortic Valve Disease/diagnostic imaging , Bicuspid Aortic Valve Disease/physiopathology , Adult , Aortic Valve/diagnostic imaging , Aortic Valve/physiopathology , Biomechanical Phenomena , Female , Hemodynamics , Humans , Magnetic Resonance Imaging , Patient-Specific Modeling , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...