Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Aquac Nutr ; 2024: 7496572, 2024.
Article in English | MEDLINE | ID: mdl-38239306

ABSTRACT

Aquaculture is a crucial industry that can help meet the increasing demand for aquatic protein products and provide employment opportunities in coastal areas and beyond. If incorrectly manage, traditional aquaculture methods can have negative impacts on the environment and natural resources, including water pollution and overuse of wild fish stocks as aquafeed ingredients. Biofloc technology (BFT) may offer a promising solution to some of these challenges by promoting a cleaner and sustainable production system. BFT converts waste into bioflocs, which serve as a natural food source for fish and shrimp within the culture system, reducing the need for external inputs, such as feed and chemicals. Moreover, BFT has the potential to improve yields and economic performance while promoting efficient resource utilization, such as water and energy. Despite its numerous advantages, BFT presents several challenges, such as high energy demand, high initial/running costs, waste (effluent, suspended solids, and sludge) management, opportunistic pathogens (vibrio) spread, and a lack of understanding of operational/aquatic/microbial dynamics. However, with further training, research, and innovation, these challenges can be overcome, and BFT can become a more widely understood and adopted technique, acting as an effective method for sustainable aquaculture. In summary, BFT offers a cleaner production option that promotes circularity practices while enhancing performance and economic benefits. This technique has the potential to address several challenges faced by the aquaculture industry while ensuring its continued growth and protecting the environment. A more broad BFT adoption can contribute to meeting the increasing demand for aquaculture products while reducing the industry's negative impact on the environment and natural resources. In this context, this review provides an overview of the advantages and challenges of BFT and highlights key technical, biological, and economic aspects to optimize its application, promote further adoption, and overcome the current challenges.

2.
Fish Shellfish Immunol ; 137: 108796, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37149233

ABSTRACT

The innate immunity of invertebrates serves as a critical trait that provides a valuable foundation for studying the common biological responses to environmental changes. With the exponential growth of the human population, the demand for protein has soared, leading to the intensification of aquaculture. Regrettably, this intensification has resulted in the overuse of antibiotics and chemotherapeutics, which have led to the emergence of resistant microbes or superbugs. In this regard, biofloc technology (BFT) emerges as a promising strategy for disease management in aquaculture. By harnessing the power of antibiotics, probiotics, and prebiotics, BFT offers a sustainable and eco-friendly approach that can help mitigate the negative impacts of harmful chemicals. By adopting this innovative technology, we can enhance the immunity and promote the health of aquatic organisms, thereby ensuring the long-term viability of the aquaculture industry. Using a proper carbon to nitrogen ratio, normally adding an external carbon source, BFT recycles waste in culture system with no water exchange. Heterotrophic bacteria grow along with other key microbes in the culture water. Heterotrophs play a major role in assimilating ammonia from feed and fecal waste, crucial pathway to form suspended microbial aggregates (known as 'biofloc'); while chemoautotrophs (e.g. nitrifying bacteria) oxidize ammonia into nitrite, and nitrite into nitrate promoting a healthy farming conditions. By using a highly aerated media and an organic substrates that contain carbon and nitrogen, protein-rich microbes are able to flocculate in culture water. Several types of microorganisms and their cell components have been studied and applied to aquatic animals as probiotics or immunostimulants (lipopolysaccharide, peptidoglycan, and 1-glucans) to enhance their innate immunity and antioxidant status, thereby enhancing their resistance to disease. In recent years, many studies have been conducted on the application of BFT for different farmed aquatic species and it has been observed as a promising method for the development of sustainable aquaculture, especially due to less use of water, increased productivity and biosecurity, but also an enhancement of the health status of several aquaculture species. This review analyses the immune status, antioxidant activity, blood and biochemical parameters, and level of resistance against pathogenic agents of aquatic animals farmed in BFT systems. This manuscript aims to gather and showcase the scientific evidences related to biofloc as a 'health promoter' in a unique document for the industry and academia.


Subject(s)
Ammonia , Nitrites , Animals , Humans , Aquaculture/methods , Nitrogen/analysis , Carbon
3.
Crit Rev Biotechnol ; 37(3): 287-295, 2017 May.
Article in English | MEDLINE | ID: mdl-26863376

ABSTRACT

Increasing global population and the consequent increase in demand for food are not a new story. Agroindustrial activities such as livestock help meet this demand. Aquaculture arose decades ago and revolutionized the agroindustrial activity as a significant food generator. However, like livestock, aquaculture is based on finite resources and has been accused of being unsustainable. Abandoning aquaculture is not an option considering the food, foreign exchange, and employment it generates, and therefore must be reinvented. Among the many alternatives suggested to make aquaculture more sustainable, microorganisms have been highlighted as a direct food source for cultured fish and crustaceans, a strategy that promises to revolutionize aquaculture by eliminating waste. Considering waste, as part of a cycle, it can increase stock densities and reduce emissions of contaminants and operational costs.


Subject(s)
Animal Feed/microbiology , Aquaculture/methods , Fishes/microbiology , Food Microbiology/methods , Food Technology/methods , Probiotics , Animals , Bacterial Physiological Phenomena , Conservation of Natural Resources/methods , Fishes/physiology , Food Handling/methods , Food Supply/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...