Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 12(2)2021 04 05.
Article in English | MEDLINE | ID: mdl-33820823

ABSTRACT

Gram-negative bacteria utilize the resistance-nodulation-cell division (RND) superfamily of efflux pumps to expel a variety of toxic compounds from the cell. The Escherichia coli CusA membrane protein, which recognizes and extrudes biocidal Cu(I) and Ag(I) ions, belongs to the heavy-metal efflux (HME) subfamily of RND efflux pumps. We here report four structures of the trimeric CusA heavy-metal efflux pump in the presence of Cu(I) using single-particle cryo-electron microscopy (cryo-EM). We discover that different CusA protomers within the trimer are able to bind Cu(I) ions simultaneously. Our structural data combined with molecular dynamics (MD) simulations allow us to propose a mechanism for ion transport where each CusA protomer functions independently within the trimer.IMPORTANCE The bacterial RND superfamily of efflux pumps mediate resistance to a variety of biocides, including Cu(I) and Ag(I) ions. Here we report four cryo-EM structures of the trimeric CusA pump in the presence of Cu(I). Combined with MD simulations, our data indicate that each CusA protomer within the trimer recognizes and extrudes Cu(I) independently.


Subject(s)
Cryoelectron Microscopy , Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Ion Transport , Membrane Transport Proteins/chemistry , Metals, Heavy/metabolism , Binding Sites , Biological Transport , Copper/metabolism , Escherichia coli/genetics , Escherichia coli/ultrastructure , Escherichia coli Proteins/ultrastructure , Membrane Transport Proteins/ultrastructure , Molecular Dynamics Simulation , Protein Binding , Silver/metabolism
2.
Viruses ; 13(1)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467558

ABSTRACT

Adenovirus (AdV) infection elicits a strong immune response with the production of neutralizing antibodies and opsonization by complement and coagulation factors. One anti-hexon neutralizing antibody, called 9C12, is known to activate the complement cascade, resulting in the deposition of complement component C4b on the capsid, and the neutralization of the virus. The mechanism of AdV neutralization by C4b is independent of downstream complement proteins and involves the blockage of the release of protein VI, which is required for viral escape from the endosome. To investigate the structural basis underlying how C4b blocks the uncoating of AdV, we built a model for the complex of human adenovirus type-5 (HAdV5) with 9C12, together with complement components C1 and C4b. This model positions C4b near the Arg-Gly-Asp (RGD) loops of the penton base. There are multiple amino acids in the RGD loop that might serve as covalent binding sites for the reactive thioester of C4b. Molecular dynamics simulations with a multimeric penton base and C4b indicated that stabilizing interactions may form between C4b and multiple RGD loops. We propose that C4b deposition on one RGD loop leads to the entanglement of C4b with additional RGD loops on the same penton base multimer and that this entanglement blocks AdV uncoating.


Subject(s)
Adenoviridae/immunology , Complement C4/chemistry , Complement C4/immunology , Models, Molecular , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Binding Sites , Capsid/chemistry , Capsid/metabolism , Capsid/ultrastructure , Capsid Proteins/chemistry , Capsid Proteins/immunology , Capsid Proteins/metabolism , Capsid Proteins/ultrastructure , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Structure-Activity Relationship
3.
Sci Transl Med ; 12(571)2020 11 25.
Article in English | MEDLINE | ID: mdl-33239388

ABSTRACT

Oncolytic virus therapy is a cancer treatment modality that has the potential to improve outcomes for patients with currently incurable malignancies. Although intravascular delivery of therapeutic viruses provides access to disseminated tumors, this delivery route exposes the virus to opsonizing and inactivating factors in the blood, which limit the effective therapeutic virus dose and contribute to activation of systemic toxicities. When human species C adenovirus HAdv-C5 is delivered intravenously, natural immunoglobulin M (IgM) antibodies and coagulation factor X rapidly opsonize HAdv-C5, leading to virus sequestration in tissue macrophages and promoting infection of liver cells, triggering hepatotoxicity. Here, we showed that natural IgM antibody binds to the hypervariable region 1 (HVR1) of the main HAdv-C5 capsid protein hexon. Using compound targeted mutagenesis of hexon HVR1 loop and other functional sites that mediate virus-host interactions, we engineered and obtained a high-resolution cryo-electron microscopy structure of an adenovirus vector, Ad5-3M, which resisted inactivation by blood factors, avoided sequestration in liver macrophages, and failed to trigger hepatotoxicity after intravenous delivery. Systemic delivery of Ad5-3M to mice with localized or disseminated lung cancer led to viral replication in tumor cells, suppression of tumor growth, and prolonged survival. Thus, compound targeted mutagenesis of functional sites in the virus capsid represents a generalizable approach to tailor virus interactions with the humoral and cellular arms of the immune system, enabling generation of "designer" viruses with improved therapeutic properties.


Subject(s)
Adenoviruses, Human , Neoplasms , Adenoviridae/genetics , Adenoviruses, Human/genetics , Animals , Cryoelectron Microscopy , Genetic Vectors , Humans , Immunity, Innate , Mice , Neoplasms/therapy
4.
J Virol ; 94(9)2020 04 16.
Article in English | MEDLINE | ID: mdl-32051269

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causal agent for Kaposi's sarcoma (KS), the most common malignancy in people living with human immunodeficiency virus (HIV)/AIDS. The oral cavity is a major route for KSHV infection and transmission. However, how KSHV breaches the oral epithelial barrier for spreading to the body is not clear. Here, we show that exosomes purified from either the saliva of HIV-positive individuals or the culture supernatants of HIV-1-infected T-cell lines promote KSHV infectivity in immortalized and primary human oral epithelial cells. HIV-associated saliva exosomes contain the HIV trans-activation response element (TAR), Tat, and Nef RNAs but do not express Tat and Nef proteins. The TAR RNA in HIV-associated exosomes contributes to enhancing KSHV infectivity through the epidermal growth factor receptor (EGFR). An inhibitory aptamer against TAR RNA reduces KSHV infection facilitated by the synthetic TAR RNA in oral epithelial cells. Cetuximab, a monoclonal neutralizing antibody against EGFR, blocks HIV-associated exosome-enhanced KSHV infection. Our findings reveal that saliva containing HIV-associated exosomes is a risk factor for the enhancement of KSHV infection and that the inhibition of EGFR serves as a novel strategy for preventing KSHV infection and transmission in the oral cavity.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the causal agent for Kaposi's sarcoma (KS), the most common malignancy in HIV/AIDS patients. Oral transmission through saliva is considered the most common route for spreading the virus among HIV/AIDS patients. However, the role of HIV-specific components in the cotransfection of KSHV is unclear. We demonstrate that exosomes purified from the saliva of HIV-positive patients and secreted by HIV-infected T-cell lines promote KSHV infectivity in immortalized and primary oral epithelial cells. HIV-associated exosomes promote KSHV infection, which depends on HIV trans-activation response element (TAR) RNA and EGFR of oral epithelial cells, which can be targeted for reducing KSHV infection. These results reveal that HIV-associated exosomes are a risk factor for KSHV infection in the HIV-infected population.


Subject(s)
Exosomes/metabolism , Sarcoma, Kaposi/metabolism , Adult , Cell Line , Epithelium/metabolism , Epithelium/virology , ErbB Receptors/metabolism , HIV Infections/virology , HIV-1/metabolism , HIV-1/physiology , Herpesvirus 8, Human/metabolism , Herpesvirus 8, Human/pathogenicity , Humans , Male , Saliva/chemistry , Saliva/virology , Sarcoma, Kaposi/virology , Virus Activation , Virus Replication
5.
Nanoscale ; 11(33): 15647-15658, 2019 Sep 07.
Article in English | MEDLINE | ID: mdl-31408083

ABSTRACT

Advancement of ultrasound molecular imaging applications requires not only a reduction in size of the ultrasound contrast agents (UCAs) but also a significant improvement in the in vivo stability of the shell-stabilized gas bubble. The transition from first generation to second generation UCAs was marked by an advancement in stability as air was replaced by a hydrophobic gas, such as perfluoropropane and sulfur hexafluoride. Further improvement can be realized by focusing on how well the UCAs shell can retain the encapsulated gas under extreme mechanical deformations. Here we report the next generation of UCAs for which we engineered the shell structure to impart much better stability under repeated prolonged oscillation due to ultrasound, and large changes in shear and turbulence as it circulates within the body. By adapting an architecture with two layers of contrasting elastic properties similar to bacterial cell envelopes, our ultrastable nanobubbles (NBs) withstand continuous in vitro exposure to ultrasound with minimal signal decay and have a significant delay on the onset of in vivo signal decay in kidney, liver, and tumor. Development of ultrastable NBs can potentially expand the role of ultrasound in molecular imaging, theranostics, and drug delivery.

6.
mBio ; 10(4)2019 07 02.
Article in English | MEDLINE | ID: mdl-31266873

ABSTRACT

Resistance-nodulation-cell division multidrug efflux pumps are membrane proteins that catalyze the export of drugs and toxic compounds out of bacterial cells. Within the hydrophobe-amphiphile subfamily, these multidrug-resistant proteins form trimeric efflux pumps. The drug efflux process is energized by the influx of protons. Here, we use single-particle cryo-electron microscopy to elucidate the structure of the Acinetobacter baumannii AdeB multidrug efflux pump embedded in lipidic nanodiscs to a resolution of 2.98 Å. We found that each AdeB molecule within the trimer preferentially takes the resting conformational state in the absence of substrates. We propose that proton influx and drug efflux are synchronized and coordinated within the transport cycle.IMPORTANCEAcinetobacter baumannii is a successful human pathogen which has emerged as one of the most problematic and highly antibiotic-resistant Gram-negative bacteria worldwide. Multidrug efflux is a major mechanism that A. baumannii uses to counteract the action of multiple classes of antibiotics, such as ß-lactams, tetracyclines, fluoroquinolones, and aminoglycosides. Here, we report a cryo-electron microscopy (cryo-EM) structure of the prevalent A. baumannii AdeB multidrug efflux pump, which indicates a plausible pathway for multidrug extrusion. Overall, our data suggest a mechanism for energy coupling that powers up this membrane protein to export antibiotics from bacterial cells. Our studies will ultimately inform an era in structure-guided drug design to combat multidrug resistance in these Gram-negative pathogens.


Subject(s)
Acinetobacter baumannii/enzymology , Bacterial Proteins/chemistry , Membrane Transport Proteins/chemistry , Cryoelectron Microscopy , Humans , Protein Conformation , Protein Multimerization , Single Molecule Imaging
7.
PLoS One ; 12(11): e0187991, 2017.
Article in English | MEDLINE | ID: mdl-29155853

ABSTRACT

Glutaredoxin (Grx1) is a ubiquitously expressed thiol-disulfide oxidoreductase that specifically catalyzes reduction of S-glutathionylated substrates. Grx1 is known to be a key regulator of pro-inflammatory signaling, and Grx1 silencing inhibits inflammation in inflammatory disease models. Therefore, we anticipate that inhibition of Grx1 could be an anti-inflammatory therapeutic strategy. We used a rapid screening approach to test 504 novel electrophilic compounds for inhibition of Grx1, which has a highly reactive active-site cysteine residue (pKa 3.5). From this chemical library a chloroacetamido compound, CWR-J02, was identified as a potential lead compound to be characterized. CWR-J02 inhibited isolated Grx1 with an IC50 value of 32 µM in the presence of 1 mM glutathione. Mass spectrometric analysis documented preferential adduction of CWR-J02 to the active site Cys-22 of Grx1, and molecular dynamics simulation identified a potential non-covalent binding site. Treatment of the BV2 microglial cell line with CWR-J02 led to inhibition of intracellular Grx1 activity with an IC50 value (37 µM). CWR-J02 treatment decreased lipopolysaccharide-induced inflammatory gene transcription in the microglial cells in a parallel concentration-dependent manner, documenting the anti-inflammatory potential of CWR-J02. Exploiting the alkyne moiety of CWR-J02, we used click chemistry to link biotin azide to CWR-J02-adducted proteins, isolating them with streptavidin beads. Tandem mass spectrometric analysis identified many CWR-J02-reactive proteins, including Grx1 and several mediators of inflammatory activation. Taken together, these data identify CWR-J02 as an intracellularly effective Grx1 inhibitor that may elicit its anti-inflammatory action in a synergistic manner by also disabling other pro-inflammatory mediators. The CWR-J02 molecule provides a starting point for developing more selective Grx1 inhibitors and anti-inflammatory agents for therapeutic development.


Subject(s)
Acetanilides/pharmacology , Anti-Inflammatory Agents/pharmacology , Glutaredoxins/antagonists & inhibitors , Microglia/drug effects , Phthalic Acids/pharmacology , Acetanilides/chemical synthesis , Amino Acid Sequence , Animals , Anti-Inflammatory Agents/chemical synthesis , Binding Sites , Biotin/chemistry , Cell Line , Click Chemistry , Gene Expression , Glutaredoxins/chemistry , Glutaredoxins/genetics , Glutaredoxins/metabolism , High-Throughput Screening Assays , Kinetics , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Mice , Microglia/cytology , Microglia/metabolism , Molecular Dynamics Simulation , Phthalic Acids/chemical synthesis , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Streptavidin/chemistry , Thermodynamics
8.
FEBS Open Bio ; 7(1): 25-34, 2017 01.
Article in English | MEDLINE | ID: mdl-28097085

ABSTRACT

Adenylate cyclase toxin domain (CyaA-ACD) is a calmodulin (CaM)-dependent adenylate cyclase involved in Bordetella pertussis pathogenesis. Calcium (Ca2+) and magnesium (Mg2+) concentrations impact CaM-dependent CyaA-ACD activation, but the structural mechanisms remain unclear. In this study, NMR, dynamic light scattering, and native PAGE were used to probe Mg2+-induced transitions in CaM's conformation in the presence of CyaA-ACD. Mg2+ binding was localized to sites I and II, while sites III and IV remained Ca2+ loaded when CaM was bound to CyaA-ACD. 2Mg2+/2Ca2+-loaded CaM/CyaA-ACD was elongated, whereas mutation of site I altered global complex conformation. These data suggest that CyaA-ACD interaction moderates CaM's Ca2+- and Mg2+-binding capabilities, which may contribute to pathobiology.

9.
Protein Sci ; 23(6): 833-42, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24687350

ABSTRACT

Mortalin, a member of the Hsp70-family of molecular chaperones, functions in a variety of processes including mitochondrial protein import and quality control, Fe-S cluster protein biogenesis, mitochondrial homeostasis, and regulation of p53. Mortalin is implicated in regulation of apoptosis, cell stress response, neurodegeneration, and cancer and is a target of the antitumor compound MKT-077. Like other Hsp70-family members, Mortalin consists of a nucleotide-binding domain (NBD) and a substrate-binding domain. We determined the crystal structure of the NBD of human Mortalin at 2.8 Å resolution. Although the Mortalin nucleotide-binding pocket is highly conserved relative to other Hsp70 family members, we find that its nucleotide affinity is weaker than that of Hsc70. A Parkinson's disease-associated mutation is located on the Mortalin-NBD surface and may contribute to Mortalin aggregation. We present structure-based models for how the Mortalin-NBD may interact with the nucleotide exchange factor GrpEL1, with p53, and with MKT-077. Our structure may contribute to the understanding of disease-associated Mortalin mutations and to improved Mortalin-targeting antitumor compounds.


Subject(s)
HSP70 Heat-Shock Proteins/biosynthesis , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/metabolism , Mitochondria/metabolism , Humans , Nucleotides/metabolism , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...