Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-448343

ABSTRACT

The COVID-19 pandemic caused by the {beta}-coronavirus SARS-CoV-2 has made the development of safe and effective vaccines a critical global priority. To date, four vaccines have already been approved by European and American authorities for preventing COVID-19 but the development of additional vaccine platforms with improved supply and logistics profiles remains a pressing need. Here we report the preclinical evaluation of a novel COVID-19 vaccine candidate based on the electroporation of engineered, synthetic cDNA encoding a viral antigen in the skeletal muscle, a technology previously utilized for cancer vaccines. We constructed a set of prototype DNA vaccines expressing various forms of the SARS-CoV-2 Spike (S) protein and assessed their immunogenicity in animal models. Among them, COVID-eVax - a DNA plasmid encoding a secreted monomeric form of SARS-CoV-2 S protein RBD - induced the most potent anti-SARS-CoV-2 neutralizing antibody responses (including against the current most common variants of concern) and a robust T cell response. Upon challenge with SARS-CoV-2, immunized K18-hACE2 transgenic mice showed reduced weight loss, improved pulmonary function and significantly lower viral replication in the lungs and brain. COVID-eVax conferred significant protection to ferrets upon SARS-CoV-2 challenge. In summary, this study identifies COVID-eVax as an ideal COVID-19 vaccine candidate suitable for clinical development. Accordingly, a combined phase I-II trial has recently started in Italy.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21258284

ABSTRACT

Specific memory B cells and antibodies are reliable read-out of vaccine efficacy. We analyzed these biomarkers after one and two doses of BNT162b2 vaccine. The second dose significantly increases the level of highly-specific memory B cells and antibodies. Two months after the second dose, specific antibody levels decline, but highly specific memory B cells continue to increase thus predicting a sustained protection from COVID-19. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=112 SRC="FIGDIR/small/21258284v1_ufig1.gif" ALT="Figure 1"> View larger version (28K): org.highwire.dtl.DTLVardef@1700325org.highwire.dtl.DTLVardef@deb172org.highwire.dtl.DTLVardef@53f056org.highwire.dtl.DTLVardef@c7a98d_HPS_FORMAT_FIGEXP M_FIG Graphical Abstract C_FIG

SELECTION OF CITATIONS
SEARCH DETAIL
...