Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22280033

ABSTRACT

The effect of immune checkpoint blockade on COVID-19 immunity is unclear. In this study, we determine whether immune checkpoint blockade expanded age-associated B cells (ABCs) are similar to those present in other conditions, and whether they enhance or detract from the COVID-19 vaccine responses. First, we use single cell RNA sequencing (scRNAseq) to show that ABCs arising from distinct aetiologies have common transcriptional profiles and may be further subdivided according to expression of genes associated with different immune functions, including the autoimmune regulator (AIRE). Next, we perform detailed longitudinal profiling of the COVID-19 vaccination response in patients. Finally, we show that high pre-vaccination ABC frequency correlates with decreased levels of antigen-specific memory B cells, and reduced magnitude and longevity of neutralising capacity against authentic SARS-CoV-2 virus. Expansion of ABCs is a biomarker for individuals with cancer requiring additional or more frequent booster immunisation against COVID-19.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22276196

ABSTRACT

Obesity is associated with an increased risk of severe Covid-19. However, the effectiveness of SARS-CoV-2 vaccines in people with obesity is unknown. Here we studied the relationship between body mass index (BMI), hospitalization and mortality due to Covid-19 amongst 3.5 million people in Scotland. Vaccinated people with severe obesity (BMI>40 kg/m2) were significantly more likely to experience hospitalization or death from Covid-19. Excess risk increased with time since vaccination. To investigate the underlying mechanisms, we conducted a prospective longitudinal study of the immune response in a clinical cohort of vaccinated people with severe obesity. Compared with normal weight people, six months after their second vaccine dose, significantly more people with severe obesity had unquantifiable titres of neutralizing antibody against authentic SARS-CoV-2 virus, reduced frequencies of antigen-experienced SARS-CoV-2 Spike-binding B cells, and a dissociation between anti-Spike antibody levels and neutralizing capacity. Neutralizing capacity was restored by a third dose of vaccine, but again declined more rapidly in people with severe obesity. We demonstrate that waning of SARS-CoV-2 vaccine-induced humoral immunity is accelerated in people with severe obesity and associated with increased hospitalization and mortality from breakthrough infections. Given the prevalence of obesity, our findings have significant implications for global public health.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-22275865

ABSTRACT

Both infection and vaccination, alone or in combination, generate antibody and T cell responses against SARSCoV2. However, the maintenance of such responses, and hence protection from disease, requires careful characterisation. In a large prospective study of UK healthcare workers (Protective immunity from T cells in Healthcare workers (PITCH), within the larger SARSCoV2 immunity and reinfection evaluation (SIREN) study) we previously observed that prior infection impacted strongly on subsequent cellular and humoral immunity induced after long and short dosing intervals of BNT162b2 (Pfizer/BioNTech) vaccination. Here, we report longer follow up of 684 HCWs in this cohort over 6-9 months following two doses of BNT162b2 or AZD1222 (Oxford/AstraZeneca) vaccination and up to 6 months following a subsequent mRNA booster vaccination. We make three observations: Firstly, the dynamics of humoral and cellular responses differ; binding and neutralising antibodies declined whereas T and memory B cell responses were maintained after the second vaccine dose. Secondly, vaccine boosting restored IgG levels, broadened neutralising activity against variants of concern including omicron BA.1, BA.2 and BA.5, and boosted T cell responses above the 6 month level post dose 2. Thirdly, prior infection maintained its impact driving larger as well as broader T cell responses compared with never-infected people, a feature maintained until 6 months after the third dose. In conclusion, broadly cross-reactive T cell responses are well maintained over time, especially in those with combined vaccine and infection-induced immunity (hybrid immunity), and may contribute to continued protection against severe disease.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-435957

ABSTRACT

Efforts to define serological correlates of protection against COVID-19 have been hampered by the lack of a simple, scalable, standardised assay for SARS-CoV-2 infection and antibody neutralisation. Plaque assays remain the gold standard, but are impractical for high-throughput screening. In this study, we show that expression of viral proteases may be used to quantitate infected cells. Our assays exploit the cleavage of specific oligopeptide linkers, leading to the activation of cell-based optical biosensors. First, we characterise these biosensors using recombinant SARS-CoV-2 proteases. Next, we confirm their ability to detect viral protease expression during replication of authentic virus. Finally, we generate reporter cells stably expressing an optimised luciferase-based biosensor, enabling viral infection to be measured within 24 h in a 96- or 384-well plate format, including variants of concern. We have therefore developed a luminescent SARS-CoV-2 reporter cell line, and demonstrated its utility for the relative quantitation of infectious virus and titration of neutralising antibodies. Author summaryTechniques for measuring infection with SARS-CoV-2 in the laboratory are laborious and time-consuming, and different laboratories use different approaches. There is therefore no generally agreed way to quantitate neutralising antibodies against SARS-CoV-2, which block infection with the virus and protect people from COVID-19. In this study, we describe a new way to measure SARS-CoV-2 infection, which is much simpler and faster than existing methods. It relies on the production of a specific protease enzyme by the virus, which is able to cleave and activate an engineered protein biosensor in infected cells. This biosensor emits light in the presence of viral infection, and the amount of light released is used as a readout for the amount of infectious SARS-CoV-2 present. The signal is very sensitive, so the number of infected cells required is very small, and the method can be scaled-up to test many samples at once. In particular, we demonstrate how it can be used to detect different variants of SARS-CoV-2, and quantitate neutralising antibodies against these viruses.

SELECTION OF CITATIONS
SEARCH DETAIL
...