Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Neurol Genet ; 9(2): e200058, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37090936

ABSTRACT

Background and Objectives: Coenzyme Q10 (CoQ10)-deficient cerebellar ataxia can be due to pathogenic variants in genes encoding for CoQ10 biosynthetic proteins or associated with defects in protein unrelated to its biosynthesis. Diagnosis is crucial because patients may respond favorably to CoQ10 supplementation. The aim of this study was to identify through whole-exome sequencing (WES) the pathogenic variants, and assess CoQ10 levels, in fibroblasts from patients with undiagnosed cerebellar ataxia referred to investigate CoQ10 deficiency. Methods: WES was performed on genomic DNA extracted from 16 patients. Sequencing data were filtered using a virtual panel of genes associated with CoQ10 deficiency and/or cerebellar ataxia. CoQ10 levels were measured by high-performance liquid chromatography in 14 patient-derived fibroblasts. Results: A definite genetic etiology was identified in 8 samples of 16 (diagnostic yield = 50%). The identified genetic causes were pathogenic variants of the genes COQ8A (ADCK3) (n = 3 samples), ATP1A3 (n = 2), PLA2G6 (n = 1), SPG7 (n = 1), and MFSD8 (n = 1). Five novel mutations were found (COQ8A n = 3, PLA2G6 n = 1, and MFSD8 n = 1). CoQ10 levels were significantly decreased in 3/14 fibroblast samples (21.4%), 1 carrying compound heterozygous COQ8A pathogenic variants, 1 harboring a homozygous pathogenic SPG7 variant, and 1 with an unknown molecular defect. Discussion: This work confirms the importance of COQ8A gene mutations as a frequent genetic cause of cerebellar ataxia and CoQ10 deficiency and suggests SPG7 mutations as a novel cause of secondary CoQ10 deficiency.

2.
Cell Mol Neurobiol ; 43(5): 2219-2241, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36571634

ABSTRACT

Traumatic brain injury (TBI) can lead to neurodegenerative diseases such as Alzheimer's disease (AD) through mechanisms that remain incompletely characterized. Similar to AD, TBI models present with cellular metabolic alterations and modulated cleavage of amyloid precursor protein (APP). Specifically, AD and TBI tissues display increases in amyloid-ß as well as its precursor, the APP C-terminal fragment of 99 a.a. (C99). Our recent data in cell models of AD indicate that C99, due to its affinity for cholesterol, induces the formation of transient lipid raft domains in the ER known as mitochondria-associated endoplasmic reticulum (ER) membranes ("MAM" domains). The formation of these domains recruits and activates specific lipid metabolic enzymes that regulate cellular cholesterol trafficking and sphingolipid turnover. Increased C99 levels in AD cell models promote MAM formation and significantly modulate cellular lipid homeostasis. Here, these phenotypes were recapitulated in the controlled cortical impact (CCI) model of TBI in adult mice. Specifically, the injured cortex and hippocampus displayed significant increases in C99 and MAM activity, as measured by phospholipid synthesis, sphingomyelinase activity and cholesterol turnover. In addition, our cell type-specific lipidomics analyses revealed significant changes in microglial lipid composition that are consistent with the observed alterations in MAM-resident enzymes. Altogether, we propose that alterations in the regulation of MAM and relevant lipid metabolic pathways could contribute to the epidemiological connection between TBI and AD.


Subject(s)
Alzheimer Disease , Brain Injuries, Traumatic , Mice , Animals , Alzheimer Disease/metabolism , Mitochondria/metabolism , Up-Regulation , Endoplasmic Reticulum/metabolism , Amyloid beta-Protein Precursor/metabolism , Brain Injuries, Traumatic/metabolism , Lipids
3.
Mol Genet Metab ; 136(2): 125-131, 2022 06.
Article in English | MEDLINE | ID: mdl-35606253

ABSTRACT

OBJECTIVE: To harmonize terminology in mitochondrial medicine, we propose revised clinical criteria for primary mitochondrial syndromes. METHODS: The North American Mitochondrial Disease Consortium (NAMDC) established a Diagnostic Criteria Committee comprised of members with diverse expertise. It included clinicians, researchers, diagnostic laboratory directors, statisticians, and data managers. The Committee conducted a comprehensive literature review, an evaluation of current clinical practices and diagnostic modalities, surveys, and teleconferences to reach consensus on syndrome definitions for mitochondrial diseases. The criteria were refined after manual application to patients enrolled in the NAMDC Registry. RESULTS: By building upon published diagnostic criteria and integrating recent advances, NAMDC has generated updated consensus criteria for the clinical definition of classical mitochondrial syndromes. CONCLUSIONS: Mitochondrial diseases are clinically, biochemically, and genetically heterogeneous and therefore challenging to classify and diagnose. To harmonize terminology, we propose revised criteria for the clinical definition of mitochondrial disorders. These criteria are expected to standardize the diagnosis and categorization of mitochondrial diseases, which will facilitate future natural history studies and clinical trials.


Subject(s)
Mitochondrial Diseases , Consensus , Humans , Mitochondrial Diseases/diagnosis , North America , Registries , Syndrome
4.
J Inherit Metab Dis ; 44(2): 292-300, 2021 03.
Article in English | MEDLINE | ID: mdl-33368420

ABSTRACT

At present, there is just one approved therapy for patients with mitochondrial diseases in Europe, another in Japan, and none in the United States. These facts reveal an important and significant unmet need for approved therapies for these debilitating and often fatal disorders. To fill this need, it is critical for clinicians and drug developers to work closely with regulatory agencies. In the United States, mitochondrial disease patients and clinicians, the United Mitochondrial Disease Foundation, and pharmaceutical industry members have engaged with the Food and Drug Administration to educate each other about these complex and heterogeneous diseases and about regulatory requirements to obtain approvals for novel therapies. Clinical development of therapies for rare diseases has been facilitated by the 1983 US Orphan Drug Act (ODA) and similar legislation in Japan and the European Union. Further legislation and regulatory guidance have expanded and refined regulatory flexibility. While regulatory and financial incentives of the ODA have augmented involvement of pharmaceutical companies, clinicians, with patient advocacy groups and industry, need to conduct natural history studies, develop clinical outcome measures, and identify potential supportive surrogate endpoints predictive of clinical benefit, which together are critical foundations for clinical trials. Thus, the regulatory environment for novel therapeutic development is conducive and offers flexibility for mitochondrial diseases. Nevertheless, flexibility does not mean lower standards, as well-controlled rigorous clinical trials of high quality are still required to establish the efficacy of potential therapies and to obtain regulatory agency approvals for their commercial use. This process is illustrated through the authors' ongoing efforts to develop therapy for thymidine kinase 2 deficiency.


Subject(s)
Mitochondrial Diseases/drug therapy , Orphan Drug Production/legislation & jurisprudence , Drug Approval , Humans , Rare Diseases/drug therapy , United States , United States Food and Drug Administration
5.
Neurol Genet ; 6(2): e402, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32337332

ABSTRACT

OBJECTIVE: To describe clinical, biochemical, and genetic features of participants with mitochondrial diseases (MtDs) enrolled in the North American Mitochondrial Disease Consortium (NAMDC) Registry. METHODS: This cross-sectional, multicenter, retrospective database analysis evaluates the phenotypic and molecular characteristics of participants enrolled in the NAMDC Registry from September 2011 to December 2018. The NAMDC is a network of 17 centers with expertise in MtDs and includes both adult and pediatric specialists. RESULTS: One thousand four hundred ten of 1,553 participants had sufficient clinical data for analysis. For this study, we included only participants with molecular genetic diagnoses (n = 666). Age at onset ranged from infancy to adulthood. The most common diagnosis was multisystemic disorder (113 participants), and only a minority of participants were diagnosed with a classical mitochondrial syndrome. The most frequent classical syndromes were Leigh syndrome (97 individuals) and mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (71 individuals). Pathogenic variants in the mitochondrial DNA were more frequently observed (414 participants) than pathogenic nuclear gene variants (252 participants). Pathogenic variants in 65 nuclear genes were identified, with POLG1 and PDHA1 being the most commonly affected. Pathogenic variants in 38 genes were reported only in single participants. CONCLUSIONS: The NAMDC Registry data confirm the high variability of clinical, biochemical, and genetic features of participants with MtDs. This study serves as an important resource for future enhancement of MtD research and clinical care by providing the first comprehensive description of participant with MtD in North America.

7.
J Neurol ; 267(3): 823-829, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31776719

ABSTRACT

Leber hereditary optic neuropathy (LHON) typically presents as painless central or centrocecal scotoma and is due to maternally inherited mitochondrial DNA (mtDNA) mutations. Over 95% of LHON cases are caused by one of three mtDNA "common" point mutations: m.3460G>A, m.11778G>A, or m.14484T>C, which are all in genes encoding structural subunits of complex I of the respiratory chain. Intriguing features of LHON include: incomplete penetrance, tissue specificity, and male predominance, indicating that additional genetic or environmental factors are modulating the phenotypic expression of the pathogenic mtDNA mutations. However, since its original description as a purely ophthalmological disorder, LHON has also been linked to multisystemic conditions with variable neurological, cardiac, and skeletal abnormalities. Although double "common" mutations have been reported to cause LHON and LHON-plus, they are extremely rare. Here, we present a patient with an unusual double point mutation (m.11778 G>A and m.14484T>C) with a multisystemic LHON-plus phenotype characterized by: optic neuropathy, ptosis, ataxia, dystonia, dysarthria, and recurrent extensive transverse myelitis.


Subject(s)
Dystonia/genetics , Dystonia/pathology , Myelitis, Transverse/pathology , NADH Dehydrogenase/genetics , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/pathology , Adult , Humans , Male , Myelitis, Transverse/etiology , Point Mutation
8.
Curr Opin Neurol ; 32(5): 715-721, 2019 10.
Article in English | MEDLINE | ID: mdl-31408013

ABSTRACT

PURPOSE OF REVIEW: Although mitochondrial diseases impose a significant functional limitation in the lives of patients, treatment of these conditions has been limited to dietary supplements, exercise, and physical therapy. In the past few years, however, translational medicine has identified potential therapies for these patients. RECENT FINDINGS: For patients with primary mitochondrial myopathies, preliminary phase I and II multicenter clinical trials of elamipretide indicate safety and suggest improvement in 6-min walk test (6MWT) performance and fatigue scales. In addition, for thymidine kinase 2-deficient (TK2d) myopathy, compassionate-use oral administration of pyrimidine deoxynucleosides have shown preliminary evidence of safety and efficacy in survival of early onset patients and motor functions relative to historical TK2d controls. SUMMARY: The prospects of effective therapies that improve the quality of life for patients with mitochondrial myopathy underscore the necessity for definitive diagnoses natural history studies for better understanding of the diseases.


Subject(s)
Mitochondrial Myopathies/drug therapy , Oligopeptides/therapeutic use , Quality of Life , Clinical Trials as Topic , Exercise/physiology , Fatigue/physiopathology , Humans , Mitochondrial Myopathies/diagnosis , Mitochondrial Myopathies/physiopathology
9.
Curr Neuropharmacol ; 17(1): 21-32, 2019.
Article in English | MEDLINE | ID: mdl-29119930

ABSTRACT

BACKGROUND: Hereditary cerebellar ataxias are a group of disorders characterized by heterogeneous clinical manifestations, progressive clinical course, and diverse genetic causes. No disease modifying treatments are yet available for many of these disorders. Oxidative stress has been recurrently identified in different progressive cerebellar diseases, and it represents a widely investigated target for treatment. OBJECTIVE: To review the main aspects and new perspectives of antioxidant therapy in cerebellar ataxias ranging from bench to bedside. METHOD: This article is a summary of the state-of-the-art on the use of antioxidant molecules in cerebellar ataxia treatments. It also briefly summarizes aspects of oxidative stress production and general characteristics of antioxidant compounds. RESULTS: Antioxidants represent a vast category of compounds; old drugs have been extensively studied and modified in order to achieve better biological effects. Despite the vast body of literature present on the use of antioxidants in cerebellar ataxias, for the majority of these disorders conclusive results on the efficacy are still missing. CONCLUSION: Antioxidant therapy in cerebellar ataxias is a promising field of investigations. To achieve the success in identifying the correct treatment more work needs to be done. In particular, a combined effort is needed by basic scientists in developing more efficient molecules, and by clinical researchers together with patients communities, to run clinical trials in order to identify conclusive treatments strategies.


Subject(s)
Antioxidants/therapeutic use , Cerebellar Ataxia/drug therapy , Animals , Cerebellar Ataxia/metabolism , Humans , Oxidative Stress/drug effects
10.
Hum Mol Genet ; 28(2): 209-219, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30260394

ABSTRACT

X-linked scapuloperoneal myopathy (X-SM), one of Four-and-a-half LIM 1 (FHL1) related diseases, is an adult-onset slowly progressive myopathy, often associated with cardiomyopathy. We previously generated a knock-in mouse model that has the same mutation (c.365 G > C, p.W122S) as human X-SM patients. The mutant male mouse developed late-onset slowly progressive myopathy without cardiomyopathy. In this study, we observed that heterozygous (Het) and homozygous (Homo) female mice did not show alterations of skeletal muscle function or histology. In contrast, 20-month-old mutant female mice showed signs of cardiomyopathy on echocardiograms with increased systolic diameter [wild-type (WT): 2.74 ± 0.22 mm, mean ± standard deviation (SD); Het: 3.13 ± 0.11 mm, P < 0.01; Homo: 3.08 ± 0.37 mm, P < 0.05) and lower fractional shortening (WT: 31.1 ± 4.4%, mean ± SD; Het: 22.7 ± 2.5%, P < 0.01; Homo: 22.4 ± 6.9%, P < 0.01]. Histological analysis of cardiac muscle revealed frequent extraordinarily large rectangular nuclei in mutant female mice that were also observed in human cardiac muscle from X-SM patients. Western blot demonstrated decreased Fhl1 protein levels in cardiac muscle, but not in skeletal muscle, of Homo mutant female mice. Proteomic analysis of cardiac muscle from 20-month-old Homo mutant female mice indicated abnormalities of the integrin signaling pathway (ISP) in association with cardiac dysfunction. The ISP dysregulation was further supported by altered levels of a subunit of the ISP downstream effectors Arpc1a in Fhl1 mutant mice and ARPC1A in X-SM patient muscles. This study reveals the first mouse model of FHL1-related cardiomyopathy and implicates ISP dysregulation in the pathogenesis of FHL1 myopathy.


Subject(s)
Actins/metabolism , Cardiomyopathies/genetics , Integrins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , LIM Domain Proteins/genetics , Muscle Proteins/genetics , Animals , Body Composition , Body Weight , Cardiomyopathies/pathology , Echocardiography , Female , Heterozygote , Homozygote , Male , Mice , Muscle, Skeletal/pathology , Muscular Diseases/genetics , Muscular Dystrophy, Emery-Dreifuss/genetics , Mutation, Missense , Myocardium/pathology , Phenotype , Proteomics , Signal Transduction
11.
Biochim Biophys Acta Mol Basis Dis ; 1864(11): 3708-3722, 2018 11.
Article in English | MEDLINE | ID: mdl-30251690

ABSTRACT

Nephrotic syndrome (NS), a frequent chronic kidney disease in children and young adults, is the most common phenotype associated with primary coenzyme Q10 (CoQ10) deficiency and is very responsive to CoQ10 supplementation, although the pathomechanism is not clear. Here, using a mouse model of CoQ deficiency-associated NS, we show that long-term oral CoQ10 supplementation prevents kidney failure by rescuing defects of sulfides oxidation and ameliorating oxidative stress, despite only incomplete normalization of kidney CoQ levels and lack of rescue of CoQ-dependent respiratory enzymes activities. Liver and kidney lipidomics, and urine metabolomics analyses, did not show CoQ metabolites. To further demonstrate that sulfides metabolism defects cause oxidative stress in CoQ deficiency, we show that silencing of sulfide quinone oxido-reductase (SQOR) in wild-type HeLa cells leads to similar increases of reactive oxygen species (ROS) observed in HeLa cells depleted of the CoQ biosynthesis regulatory protein COQ8A. While CoQ10 supplementation of COQ8A depleted cells decreases ROS and increases SQOR protein levels, knock-down of SQOR prevents CoQ10 antioxidant effects. We conclude that kidney failure in CoQ deficiency-associated NS is caused by oxidative stress mediated by impaired sulfides oxidation and propose that CoQ supplementation does not significantly increase the kidney pool of CoQ bound to the respiratory supercomplexes, but rather enhances the free pool of CoQ, which stabilizes SQOR protein levels rescuing oxidative stress.


Subject(s)
Antioxidants/pharmacology , Ataxia/drug therapy , Hydrogen Sulfide/metabolism , Mitochondrial Diseases/drug therapy , Muscle Weakness/drug therapy , Nephrotic Syndrome/drug therapy , Ubiquinone/analogs & derivatives , Ubiquinone/deficiency , Alkyl and Aryl Transferases/genetics , Animals , Antioxidants/therapeutic use , Ataxia/complications , Ataxia/metabolism , Disease Models, Animal , HeLa Cells , Humans , Kidney/metabolism , Kidney/pathology , Metabolic Networks and Pathways/drug effects , Mice , Mice, Transgenic , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Diseases/complications , Mitochondrial Diseases/metabolism , Muscle Weakness/complications , Muscle Weakness/metabolism , Nephrotic Syndrome/etiology , Nephrotic Syndrome/metabolism , Nephrotic Syndrome/pathology , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Oxidoreductases Acting on Sulfur Group Donors/genetics , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Reactive Oxygen Species/metabolism , Ubiquinone/metabolism , Ubiquinone/pharmacology , Ubiquinone/therapeutic use
12.
Essays Biochem ; 62(3): 467-481, 2018 07 20.
Article in English | MEDLINE | ID: mdl-29980632

ABSTRACT

For the vast majority of patients with mitochondrial diseases, only supportive and symptomatic therapies are available. However, in the last decade, due to extraordinary advances in defining the causes and pathomechanisms of these diverse disorders, new therapies are being developed in the laboratory and are entering human clinical trials. In this review, we highlight the current use of dietary supplement and exercise therapies as well as emerging therapies that may be broadly applicable across multiple mitochondrial diseases or tailored for specific disorders. Examples of non-tailored therapeutic targets include: activation of mitochondrial biogenesis, regulation of mitophagy and mitochondrial dynamics, bypass of biochemical defects, mitochondrial replacement therapy, and hypoxia. In contrast, tailored therapies are: scavenging of toxic compounds, deoxynucleoside and deoxynucleotide treatments, cell replacement therapies, gene therapy, shifting mitochondrial DNA mutation heteroplasmy, and stabilization of mutant mitochondrial transfer RNAs.


Subject(s)
Mitochondrial Diseases/therapy , Animals , Cell Transplantation , Clinical Trials as Topic , DNA, Mitochondrial/genetics , Dietary Supplements , Exercise Therapy , Free Radical Scavengers/therapeutic use , Genetic Therapy , Humans , Hypoxia/metabolism , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Replacement Therapy , Mutation , Oxidative Phosphorylation , RNA, Transfer/genetics
13.
Hum Mol Genet ; 27(19): 3305-3312, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29917077

ABSTRACT

Leigh syndrome is a frequent, heterogeneous pediatric presentation of mitochondrial oxidative phosphorylation (OXPHOS) disease, manifesting with psychomotor retardation and necrotizing lesions in brain deep gray matter. OXPHOS occurs at the inner mitochondrial membrane through the integrated activity of five protein complexes, of which complex V (CV) functions in a dimeric form to directly generate adenosine triphosphate (ATP). Mutations in several different structural CV subunits cause Leigh syndrome; however, dimerization defects have not been associated with human disease. We report four Leigh syndrome subjects from three unrelated Ashkenazi Jewish families harboring a homozygous splice-site mutation (c.87 + 1G>C) in a novel CV subunit disease gene, USMG5. The Ashkenazi population allele frequency is 0.57%. This mutation produces two USMG5 transcripts, wild-type and lacking exon 3. Fibroblasts from two Leigh syndrome probands had reduced wild-type USMG5 mRNA expression and undetectable protein. The mutation did not alter monomeric CV expression, but reduced both CV dimer expression and ATP synthesis rate. Rescue with wild-type USMG5 cDNA in proband fibroblasts restored USMG5 protein, increased CV dimerization and enhanced ATP production rate. These data demonstrate that a recurrent USMG5 splice-site founder mutation in the Ashkenazi Jewish population causes autosomal recessive Leigh syndrome by reduction of CV dimerization and ATP synthesis.


Subject(s)
Leigh Disease/genetics , Mitochondria/genetics , Mitochondrial Diseases/genetics , Mitochondrial Proton-Translocating ATPases/genetics , Adenosine Triphosphate/biosynthesis , Child , Child, Preschool , Dimerization , Exons/genetics , Founder Effect , Gene Frequency , Haplotypes , Humans , Infant , Infant, Newborn , Jews/genetics , Leigh Disease/metabolism , Leigh Disease/pathology , Male , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Mutation , Oxidative Phosphorylation , RNA Splice Sites/genetics , Exome Sequencing
14.
EMBO J ; 35(18): 1979-90, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27436875

ABSTRACT

Functional variability among human clones of induced pluripotent stem cells (hiPSCs) remains a limitation in assembling high-quality biorepositories. Beyond inter-person variability, the root cause of intra-person variability remains unknown. Mitochondria guide the required transition from oxidative to glycolytic metabolism in nuclear reprogramming. Moreover, mitochondria have their own genome (mitochondrial DNA [mtDNA]). Herein, we performed mtDNA next-generation sequencing (NGS) on 84 hiPSC clones derived from a cohort of 19 individuals, including mitochondrial and non-mitochondrial patients. The analysis of mtDNA variants showed that low levels of potentially pathogenic mutations in the original fibroblasts are revealed through nuclear reprogramming, generating mutant hiPSCs with a detrimental effect in their differentiated progeny. Specifically, hiPSC-derived cardiomyocytes with expanded mtDNA mutations non-related with any described human disease, showed impaired mitochondrial respiration, being a potential cause of intra-person hiPSC variability. We propose mtDNA NGS as a new selection criterion to ensure hiPSC quality for drug discovery and regenerative medicine.


Subject(s)
Cell Differentiation , DNA, Mitochondrial/genetics , Genetic Variation , Induced Pluripotent Stem Cells/physiology , Cell Respiration , DNA, Mitochondrial/chemistry , High-Throughput Nucleotide Sequencing , Humans , Mutation , Myocytes, Cardiac/physiology , Phenotype
15.
Cell Stem Cell ; 18(6): 749-754, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27212703

ABSTRACT

Replacement of mitochondria through nuclear transfer between oocytes of two different women has emerged recently as a strategy for preventing inheritance of mtDNA diseases. Although experiments in human oocytes have shown effective replacement, the consequences of small amounts of mtDNA carryover have not been studied sufficiently. Using human mitochondrial replacement stem cell lines, we show that, even though the low levels of heteroplasmy introduced into human oocytes by mitochondrial carryover during nuclear transfer often vanish, they can sometimes instead result in mtDNA genotypic drift and reversion to the original genotype. Comparison of cells with identical oocyte-derived nuclear DNA but different mtDNA shows that either mtDNA genotype is compatible with the nucleus and that drift is independent of mitochondrial function. Thus, although functional replacement of the mitochondrial genome is possible, even low levels of heteroplasmy can affect the stability of the mtDNA genotype and compromise the efficacy of mitochondrial replacement.


Subject(s)
Genetic Drift , Mitochondria/genetics , Nuclear Transfer Techniques , Oocytes/metabolism , Cell Line , Cell Nucleus/metabolism , DNA, Mitochondrial/genetics , Genotype , Humans
16.
Hum Mol Genet ; 24(23): 6801-10, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26385640

ABSTRACT

Glycogen storage disease type IV (GSD IV) is a rare autosomal recessive disorder caused by deficiency of the glycogen-branching enzyme (GBE). The diagnostic hallmark of the disease is the accumulation of a poorly branched form of glycogen known as polyglucosan (PG). The disease is clinically heterogeneous, with variable tissue involvement and age at onset. Complete loss of enzyme activity is lethal in utero or in infancy and affects primarily the muscle and the liver. However, residual enzyme activity as low as 5-20% leads to juvenile or adult onset of a disorder that primarily affects the central and peripheral nervous system and muscles and in the latter is termed adult polyglucosan body disease (APBD). Here, we describe a mouse model of GSD IV that reflects this spectrum of disease. Homologous recombination was used to knock in the most common GBE1 mutation p.Y329S c.986A > C found in APBD patients of Ashkenazi Jewish decent. Mice homozygous for this allele (Gbe1(ys/ys)) exhibit a phenotype similar to APBD, with widespread accumulation of PG. Adult mice exhibit progressive neuromuscular dysfunction and die prematurely. While the onset of symptoms is limited to adult mice, PG accumulates in tissues of newborn mice but is initially absent from the cerebral cortex and heart muscle. Thus, PG is well tolerated in most tissues, but the eventual accumulation in neurons and their axons causes neuropathy that leads to hind limb spasticity and premature death. This mouse model mimics the pathology and pathophysiologic features of human adult-onset branching enzyme deficiency.


Subject(s)
Disease Models, Animal , Glycogen Debranching Enzyme System/genetics , Glycogen Storage Disease Type IV/metabolism , Mutation , Animals , Central Nervous System/metabolism , Central Nervous System/physiopathology , Gene Knock-In Techniques , Glycogen Storage Disease/genetics , Glycogen Storage Disease/metabolism , Glycogen Storage Disease/physiopathology , Glycogen Storage Disease Type IV/genetics , Glycogen Storage Disease Type IV/physiopathology , Mice , Muscle, Striated/metabolism , Muscle, Striated/physiopathology , Nervous System Diseases/genetics , Nervous System Diseases/metabolism , Nervous System Diseases/physiopathology , Peripheral Nervous System/metabolism , Peripheral Nervous System/physiopathology , Phenotype
17.
Curr Neurol Neurosci Rep ; 15(10): 69, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26319173

ABSTRACT

One large group of hereditary myopathies characterized by recurrent myoglobinuria, almost invariably triggered by exercise, comprises metabolic disorders of two main fuels, glycogen and long-chain fatty acids, or mitochondrial diseases of the respiratory chain. Differential diagnosis is required to distinguish the three conditions, although all cause a crisis of muscle energy. Muscle biopsy may be useful when performed well after the episode of rhabdomyolysis. Molecular genetics is increasingly the diagnostic test of choice to discover the underlying genetic basis.


Subject(s)
Myoglobinuria/metabolism , Adenosine Triphosphate/biosynthesis , Glycogen/metabolism , Humans , Mitochondria/metabolism , Muscular Diseases/metabolism , Myoglobinuria/complications , Renal Dialysis
18.
Hum Mol Genet ; 24(3): 714-26, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25274776

ABSTRACT

A member of the four-and-a-half-LIM (FHL) domain protein family, FHL1, is highly expressed in human adult skeletal and cardiac muscle. Mutations in FHL1 have been associated with diverse X-linked muscle diseases: scapuloperoneal (SP) myopathy, reducing body myopathy, X-linked myopathy with postural muscle atrophy, rigid spine syndrome (RSS) and Emery-Dreifuss muscular dystrophy. In 2008, we identified a missense mutation in the second LIM domain of FHL1 (c.365 G>C, p.W122S) in a family with SP myopathy. We generated a knock-in mouse model harboring the c.365 G>C Fhl1 mutation and investigated the effects of this mutation at three time points (3-5 months, 7-10 months and 18-20 months) in hemizygous male and heterozygous female mice. Survival was comparable in mutant and wild-type animals. We observed decreased forelimb strength and exercise capacity in adult hemizygous male mice starting from 7 to 10 months of age. Western blot analysis showed absence of Fhl1 in muscle at later stages. Thus, adult hemizygous male, but not heterozygous female, mice showed a slowly progressive phenotype similar to human patients with late-onset muscle weakness. In contrast to SP myopathy patients with the FHL1 W122S mutation, mutant mice did not manifest cytoplasmic inclusions (reducing bodies) in muscle. Because muscle weakness was evident prior to loss of Fhl1 protein and without reducing bodies, our findings indicate that loss of function is responsible for the myopathy in the Fhl1 W122S knock-in mice.


Subject(s)
Forelimb/pathology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Emery-Dreifuss/pathology , Myocardium/pathology , Age of Onset , Animals , Disease Models, Animal , Female , Gene Knock-In Techniques , Hemizygote , Heterozygote , Humans , Male , Mice , Mice, Inbred C57BL , Muscular Dystrophy, Emery-Dreifuss/epidemiology , Muscular Dystrophy, Emery-Dreifuss/genetics , Muscular Dystrophy, Emery-Dreifuss/metabolism , Mutation, Missense
19.
Mol Syndromol ; 5(3-4): 141-6, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25126046

ABSTRACT

Coenzyme Q10 (CoQ10) deficiency is a clinically and genetically heterogeneous syndrome which has been associated with 5 major clinical phenotypes: (1) encephalomyopathy, (2) severe infantile multisystemic disease, (3) nephropathy, (4) cerebellar ataxia, and (5) isolated myopathy. Of these phenotypes, cerebellar ataxia and syndromic or isolated nephrotic syndrome are the most common. CoQ10 deficiency predominantly presents in childhood. To date, causative mutations have been identified in a small proportion of patients, making it difficult to identify a phenotype-genotype correlation. Identification of CoQ10 deficiency is important because the disease, in particular muscle symptoms and nephropathy, frequently responds to CoQ10 supplementation.

20.
EMBO Mol Med ; 6(8): 1016-27, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24968719

ABSTRACT

Autosomal recessive mutations in the thymidine kinase 2 gene (TK2) cause mitochondrial DNA depletion, multiple deletions, or both due to loss of TK2 enzyme activity and ensuing unbalanced deoxynucleotide triphosphate (dNTP) pools. To bypass Tk2 deficiency, we administered deoxycytidine and deoxythymidine monophosphates (dCMP+dTMP) to the Tk2 H126N (Tk2(-/-)) knock-in mouse model from postnatal day 4, when mutant mice are phenotypically normal, but biochemically affected. Assessment of 13-day-old Tk2(-/-) mice treated with dCMP+dTMP 200 mg/kg/day each (Tk2(-/-200dCMP/) (dTMP)) demonstrated that in mutant animals, the compounds raise dTTP concentrations, increase levels of mtDNA, ameliorate defects of mitochondrial respiratory chain enzymes, and significantly prolong their lifespan (34 days with treatment versus 13 days untreated). A second trial of dCMP+dTMP each at 400 mg/kg/day showed even greater phenotypic and biochemical improvements. In conclusion, dCMP/dTMP supplementation is the first effective pharmacologic treatment for Tk2 deficiency.


Subject(s)
Mitochondrial Diseases/drug therapy , Thymidine Kinase/deficiency , Thymidine Monophosphate/therapeutic use , Animals , Deoxycytidine Monophosphate/therapeutic use , Gene Knock-In Techniques , Mice , Survival Analysis , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...