Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 7(12): e53010, 2012.
Article in English | MEDLINE | ID: mdl-23285249

ABSTRACT

After primary infection, varicella-zoster virus (VZV) establishes latency in neurons of the dorsal root and trigeminal ganglia. Many questions concerning the mechanism of VZV pathogenesis remain unanswered, due in part to the strict host tropism and inconsistent availability of human tissue obtained from autopsies and abortions. The recent development of induced pluripotent stem (iPS) cells provides great potential for the study of many diseases. We previously generated human iPS cells from skin fibroblasts by introducing four reprogramming genes with non-integrating adenovirus. In this study, we developed a novel protocol to generate sensory neurons from iPS cells. Human iPS cells were exposed to small molecule inhibitors for 10 days, which efficiently converted pluripotent cells into neural progenitor cells (NPCs). The NPCs were then exposed for two weeks to growth factors required for their conversion to sensory neurons. The iPS cell-derived sensory neurons were characterized by immunocytochemistry, flow cytometry, RT-qPCR, and electrophysiology. After differentiation, approximately 80% of the total cell population expressed the neuron-specific protein, ßIII-tubulin. Importantly, 15% of the total cell population co-expressed the markers Brn3a and peripherin, indicating that these cells are sensory neurons. These sensory neurons could be infected by both VZV and herpes simplex virus (HSV), a related alphaherpesvirus. Since limited neuronal populations are capable of supporting the entire VZV and HSV life cycles, our iPS-derived sensory neuron model may prove useful for studying alphaherpesvirus latency and reactivation.


Subject(s)
Herpesvirus 3, Human/pathogenicity , Induced Pluripotent Stem Cells/physiology , Sensory Receptor Cells/physiology , Sensory Receptor Cells/virology , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Cells, Cultured , Gene Expression Regulation, Viral , Herpes Zoster/etiology , Herpes Zoster/genetics , Herpes Zoster/pathology , Herpes Zoster/virology , Herpesvirus 3, Human/physiology , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/virology , Mice , Neural Stem Cells/metabolism , Neural Stem Cells/physiology , Neural Stem Cells/virology , Neurogenesis/genetics , Neurogenesis/physiology , Sensory Receptor Cells/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
2.
J Cell Biochem ; 112(12): 3630-7, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21793041

ABSTRACT

The hypothesis that host prion protein (PrP) converts into an infectious prion form rests on the observation that infectivity progressively decreases in direct proportion to the decrease of PrP with proteinase K (PK) treatment. PrP that resists limited PK digestion (PrP-res, PrP(sc)) has been assumed to be the infectious form, with speculative types of misfolding encoding the many unique transmissible spongiform encephalopathy (TSE) agent strains. Recently, a PK sensitive form of PrP has been proposed as the prion. Thus we re-evaluated total PrP (sensitive and resistant) and used a cell-based assay for titration of infectious particles. A keratinase (NAP) known to effectively digest PrP was compared to PK. Total PrP in FU-CJD infected brain was reduced to ≤0.3% in a 2 h PK digest, yet there was no reduction in titer. Remaining non-PrP proteins were easily visualized with colloidal gold in this highly infectious homogenate. In contrast to PK, NAP digestion left 0.8% residual PrP after 2 h, yet decreased titer by >2.5 log; few residual protein bands remained. FU-CJD infected cells with 10× the infectivity of brain by both animal and cell culture assays were also evaluated. NAP again significantly reduced cell infectivity (>3.5 log). Extreme PK digestions were needed to reduce cell PrP to <0.2%, yet a very high titer of 8 logs survived. Our FU-CJD brain results are in good accord with the only other report on maximal PrP destruction and titer. It is likely that one or more residual non-PrP proteins may protect agent nucleic acids in infectious particles.


Subject(s)
Creutzfeldt-Jakob Syndrome/metabolism , PrPSc Proteins/pathogenicity , Animals , Blotting, Western , Mice , Virulence
3.
Virulence ; 2(3): 188-99, 2011.
Article in English | MEDLINE | ID: mdl-21527829

ABSTRACT

Transmissible Spongiform Encephalopathy (TSE) agents are defined by their virulence for particular species, their spread in the population, their incubation time to cause disease, and their neuropathological sequelae. Murine adapted human agents, including sporadic CJD (sCJD), New Guinea kuru, and Japanese CJD agents, display particularly distinct incubation times and maximal infectious brain titers. They also induce agent-specific patterns of neurodegeneration. When these TSE agents are transmitted to cultured hypothalamic GT1 cells they maintain their unique identities. Nevertheless, the human kuru (kCJD) and Japanese FU-CJD agents, as well as the sheep 22L and 263K scrapie agents display doubling times that are 8x to 33x faster in cells than in brain, indicating release from complex innate immune responses. These data are most consistent with a foreign viral structure, rather than an infectious form of host prion protein (PrP-res). Profound agent-specific inhibitory effects are also apparent in GT1 cells, and maximal titer plateau in kCJD and FU-CJD differed by 1,000-fold in a cell-based assay. Remarkably, the lower titer kCJD agent rapidly induced de novo PrP-res in GT1 cells, whereas the high titer FU-CJD agent replicated silently for multiple passages. Although PrP-res is often considered to be toxic, PrP-res instead may be part of a primal defense and/or clearance mechanism against TSE environmental agents. Limited spread of particular TSE agents through nanotubes and cell-to-cell contacts probably underlies the long peripheral phase of human CJD.


Subject(s)
Creutzfeldt-Jakob Syndrome/transmission , Kuru/transmission , Prions/metabolism , Prions/pathogenicity , Scrapie/transmission , Animals , Cell Culture Techniques/methods , Cell Line , Disease Models, Animal , Humans , Immunity, Innate , Mice , Prions/immunology , Rodent Diseases/transmission , Sheep , Time Factors
4.
J Cell Biochem ; 111(1): 239-47, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20518071

ABSTRACT

Host prion protein (PrP) is most abundant in neurons where its functions are unclear. PrP mRNA transcripts accumulate at key developmental times linked to cell division arrest and terminal differentiation. We sought to find if proliferative arrest was sufficient to cause an increase in PrP in developing neurons. Rat neuronal precursor cells transduced with the temperature sensitive SV-40 T antigen just before terminal differentiation (permissive at 33 degrees C but not at 37.5 degrees C) were analyzed. By 2 days, T antigen was decreased in all cells at 37.5 degrees C, with few DNA synthesizing (BrdU+) cells. Proliferative arrest induced by 37.5 degrees C yielded a fourfold PrP increase. When combined with reduced serum, a sevenfold increase was found. Within 2 days additional neuritic processes with abundant plasma membrane PrP connected many cells. PrP also concentrated between apposed stationary cells, and on extending growth cones and their filopodia. Stationary cells were maintained for 30 days in their original plate, and they reverted to a proliferating low PrP state at 33 degrees C. Ultrastructural studies confirmed increased nanotubes and adherent junctions between high PrP cells. Additionally, some cells shared cytoplasm and these apparently open regions are likely conduits for the exchange of organelles and viruses that have been observed in living cells. Thus PrP is associated with dynamic recognition and contact functions, and may be involved in the transient formation of neural syncytia at key times in embryogenesis. This system can be used to identify drugs that inhibit the transport and spread of infectious CJD particles through the nervous system.


Subject(s)
Cell Communication/physiology , Cell Proliferation , Nanotubes , Neurons/physiology , Prions/biosynthesis , Animals , Humans , Neurons/cytology , Prions/genetics , Rats
5.
Proc Natl Acad Sci U S A ; 106(32): 13529-34, 2009 Aug 11.
Article in English | MEDLINE | ID: mdl-19633190

ABSTRACT

Human sporadic Creutzfeldt-Jakob disease (sCJD), endemic sheep scrapie, and epidemic bovine spongiform encephalopathy (BSE) are caused by a related group of infectious agents. The new U.K. BSE agent spread to many species, including humans, and clarifying the origin, specificity, virulence, and diversity of these agents is critical, particularly because infected humans do not develop disease for many years. As with viruses, transmissible spongiform encephalopathy (TSE) agents can adapt to new species and become more virulent yet maintain fundamentally unique and stable identities. To make agent differences manifest, one must keep the host genotype constant. Many TSE agents have revealed their independent identities in normal mice. We transmitted primate kuru, a TSE once epidemic in New Guinea, to mice expressing normal and approximately 8-fold higher levels of murine prion protein (PrP). High levels of murine PrP did not prevent infection but instead shortened incubation time, as would be expected for a viral receptor. Sporadic CJD and BSE agents and representative scrapie agents were clearly different from kuru in incubation time, brain neuropathology, and lymphoreticular involvement. Many TSE agents can infect monotypic cultured GT1 cells, and unlike sporadic CJD isolates, kuru rapidly and stably infected these cells. The geographic independence of the kuru agent provides additional reasons to explore causal environmental pathogens in these infectious neurodegenerative diseases.


Subject(s)
Creutzfeldt-Jakob Syndrome/pathology , Geography , Kuru/pathology , Prions/isolation & purification , Scrapie/pathology , Animals , Brain/pathology , Cattle , Cells, Cultured , Creutzfeldt-Jakob Syndrome/transmission , Humans , Kuru/transmission , Mice , Neurons/pathology , Prions/metabolism , Sheep , Time Factors , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...