Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(26): 34135-34140, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38900936

ABSTRACT

Hydrogen peroxide (H2O2) is a highly effective decontaminant against chemical warfare agents (CWAs) when present both in a liquid and as a solid powder. For the latter, this can be in the form of H2O2 being complexed to a polymer, such as polyvinylpyrrolidone (PVP). While a H2O2-PVP complex is indeed effective at decontaminating CWAs, it is vulnerable to environmental conditions such as high relative humidities (RH), which can dissociate the H2O2 from the complex before it is given the opportunity to react with CWAs. In this paper, we demonstrate that the cross-linked version of PVP forms a highly stable complex with H2O2, which can withstand both high (40 °C) and low (-20 °C) temperatures as well as maintain stability at high RH up to 90% over several days. Collectively, this lays the framework for processing the H2O2-PVP complex in a variety of form factors that can maintain efficacy under a wide range of real-world environmental conditions.

2.
Opt Express ; 32(4): 4745-4755, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439219

ABSTRACT

Waveguide-enhanced Raman spectroscopy (WERS) is an analytical technique frequently employed for chemical and biological sensing. Operation at visible wavelengths to harness the inverse fourth power with excitation wavelength signal scaling of Raman scattering intensity is desirable, to combat the inherent inefficiency of Raman spectroscopy. Until now, WERS demonstrations in the visible have required custom materials and fabrication, resulting in high losses and low yields. In this work, we demonstrate a silicon nitride (SIN) visible WERS platform fabricated in a 300 mm complementary metal-oxide semiconductor (CMOS) foundry. We measure the propagation loss, coupling loss, WERS signal, and background for WERS spirals designed for 532 nm and 633 nm pump wavelengths. We compare these results to the state-of-the-art near-infrared WERS platform at 785 nm. Further, we theoretically validate the relative performance of each of these WERS configurations, and we discuss the optimal WERS configuration at visible wavelengths. We conclude that a configuration optimized for 785 nm pumping provides the greatest signal-to-background ratio in the fingerprint region of the spectrum, and pumping at 633 nm maximizes Stokes signal out to 3000 cm-1.

3.
Appl Spectrosc ; 77(5): 439-448, 2023 May.
Article in English | MEDLINE | ID: mdl-36792941

ABSTRACT

Raman cross sections and spectra were measured for five synthetic opioid fentanyl analogs: fentanyl citrate, sufentanil citrate, alfentanil HCl, carfentanil oxalate, and remifentanil HCl. The measurements were performed with excitation wavelengths in the visible (532 nm) and near infrared (785 nm). In addition, density functional theory (DFT) calculations were employed to generate simulated spectra of the compounds and aid in identification of the observed spectral modes. These cross-section measurements and calculations were also used to assess results from a series of measurements of fentanyls cut with other powdered materials. These measurements are valuable for assessment of field-deployable Raman chemical sensors for detection of fentanyl and fentanyl analogs, including when mixed with other materials.

4.
Phys Chem Chem Phys ; 22(28): 15953-15965, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32628226

ABSTRACT

The effect of substituents on the surface adsorption equilibria of thiophenols and isoquinolines on gold substrates was studied using surface-enhanced Raman spectroscopy (SERS) in order to determine the effects of the localized dipole moments and charge donating/withdrawing properties on the binding affinity. Two common classes of molecules used in SERS studies were examined, which included substituted aromatic thiols and nitrogen heterocyclic aromatic molecules (azaarenes), due to their strong affinity for gold surfaces. Unsubstituted thiophenol in aqueous solution binds strongly to gold surfaces. Therefore, it is difficult to measure an equilibrium constant, since even at concentrations of 10-8 M nearly a complete self-assembled monolayer (SAM) forms. In contrast, substituted thiophenols with electron-withdrawing groups, such as halogenated thiophenols, bind much less strongly, allowing equilibrium constants to be obtained. It is believed that the substituent withdrawing charge away from the sulfur atom affects the adsorption/binding between the analyte and surface. Thiophenols substituted with electron donating groups behaved similar to unsubstituted thiophenol, where a SAM was observed at concentrations as low as 10-8 M. These functional groups did not hinder the ability of the sulfur groups to bind with gold. In addition, a series of bromine-substituted isoquinolines, a group of azaarene compounds, were measured to determine the effects that the bromine substituent has when it is bound to the two different rings and if position on the rings has an effect. The azaarene class of molecules, including isoquinoline, adsorbs less strongly than thiophenols, and a dual Langmuir isotherm phenomenon is observed where protonated and neutral bromoisoquinoline molecules occupy two different types of sites on Klarite substrates, which consist of inverted micro-pyramids on Si wafers with rough/nanostructured Au coatings. Protonated isoquinolines bind to nucleophilic sites on the substrates which tend to occur on flatter regions of the substrate. By contrast, neutral isoquinolines bind to electrophilic sites which are predominant near microscopic edges on the substrate. The presence of the bromine substituent and its position in the fused ring structure changes the Gibbs free energies of adsorption, depending on which ring the substituent is in. These results can help to guide the development of SERS for analytical applications by demonstrating how changes in functional groups can affect the equilibrium constants, which are critical for determining the effectiveness of SERS as a tool for trace detection of analytes.

5.
ACS Nano ; 9(1): 584-93, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25517652

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) is a useful technique for probing analyte-noble metal interactions and determining thermodynamic properties such as their surface reaction equilibrium constants and binding energies. In this study, we measure the binding equilibrium constants and Gibbs free energy of binding for a series of nitrogen-containing aromatic molecules adsorbed on Klarite substrates. A dual Langmuir dependence of the SERS intensity on concentration was observed for the six species studied, indicating the presence of at least two different binding energies. We relate the measured binding energies to the previously described SERS enhancement value (SEV) and show that the SEV is proportional to the traditional SERS enhancement factor G, with a constant of proportionality that is critically dependent on the adsorption equilibrium constant determined from the dual Langmuir isotherm. We believe the approach described is generally applicable to many SERS substrates, both as a prescriptive approach to determining their relative performance and as a probe of the substrate's affinity for a target adsorbate.

6.
J Phys Chem A ; 118(41): 9675-86, 2014 Oct 16.
Article in English | MEDLINE | ID: mdl-25233377

ABSTRACT

UV resonance Raman scattering is uniquely sensitive to the molecular electronic structure as well as intermolecular interactions. To better understand the relationship between electronic structure and resonance Raman cross section, we carried out combined experimental and theoretical studies of neutral tyrosine and the tyrosinate anion. We studied the Raman cross sections of four vibrational modes as a function of excitation wavelength, and we analyzed them in terms of the contributions of the individual electronic states as well as of the Albrecht A and B terms. Our model, which is based on time-dependent density functional theory (TDDFT), reproduced the experimental resonance Raman spectra and Raman excitation profiles for both studied molecules with good agreement. We found that for the studied modes, the contributions of Albrecht's B terms in the Raman cross sections were important across the frequency range spanning the L(a,b) and B(a,b) electronic excitations in tyrosine and the tyrosinate anion. Furthermore, we demonstrated that interference with high-energy states had a significant impact and could not be neglected even when in resonance with a lower-energy state. The symmetry of the vibrational modes served as an indicator of the dominance of the A or B mechanisms. Excitation profiles calculated with a damping constant estimated from line widths of the electronic absorption bands had the best consistency with experimental results.


Subject(s)
Anions/chemistry , Spectrum Analysis, Raman , Tyrosine/chemistry , Computer Simulation , Models, Molecular , Molecular Structure , Vibration
7.
Appl Spectrosc ; 68(8): 795-811, 2014.
Article in English | MEDLINE | ID: mdl-25061781

ABSTRACT

In 2010, the U.S. Army initiated a program through the Edgewood Chemical Biological Center to identify viable spectroscopic signatures of explosives and initiate environmental persistence, fate, and transport studies for trace residues. These studies were ultimately designed to integrate these signatures into algorithms and experimentally evaluate sensor performance for explosives and precursor materials in existing chemical point and standoff detection systems. Accurate and validated optical cross sections and signatures are critical in benchmarking spectroscopic-based sensors. This program has provided important information for the scientists and engineers currently developing trace-detection solutions to the homemade explosive problem. With this information, the sensitivity of spectroscopic methods for explosives detection can now be quantitatively evaluated before the sensor is deployed and tested.

8.
ACS Appl Mater Interfaces ; 6(13): 10638-48, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-24937354

ABSTRACT

Using alizarin and titanium isopropoxide, we have succeeded in preparing a hybrid form of nanostructured graphene-TiO2 following a bottom-up synthetic approach. This novel graphene-based composite offers a practical alternative to synthesizing photocatalytically active materials with maximized graphene-TiO2 interface. The molecular precursor alizarin was chosen because it efficiently binds to TiO2 through the hydroxyl groups and already possesses the graphene building block through its anthracene basis. XPS and Raman spectroscopy proved that the calcined material contained majority sp(2)-hybridized carbon that formed graphene-like clusters. XRD data showed the integrated structures maintained their anatase crystallography, therefore preserving the material's properties without going through phase transitions to rutile. The enhanced graphene and TiO2 interface was confirmed using DFT computational techniques. The photocatalytic activity of the graphene-TiO2 materials was demonstrated through degradation of methylene blue.

9.
J Phys Chem A ; 117(20): 4158-66, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23656503

ABSTRACT

Resonance Raman cross sections of common explosives have been measured by use of excitation wavelengths in the deep-UV from 229 to 262 nm. These measurements were performed both in solution and in the native solid state for comparison. While measurements of UV Raman cross sections in solution with an internal standard are straightforward and commonly found in the literature, measurements on the solid phase are rare. This is due to the difficulty in preparing a solid sample in which the molecules of the internal standard and absorbing analyte/explosive experience the same laser intensity. This requires producing solid samples that are mixtures of strongly absorbing explosives and an internal standard transparent at the UV wavelengths used. For the solid-state measurements, it is necessary to use nanostructured mixtures of the explosive and the internal standard in order to avoid this bias due to the strong UV absorption of the explosive. In this study we used a facile spray-drying technique where the analyte of interest was codeposited with the nonresonant standard onto an aluminum-coated microscope slide. The generated resonance enhancement profiles and quantitative UV-vis absorption spectra were then used to plot the relative Raman return as a function of excitation wavelength and particle size.

10.
Appl Spectrosc ; 67(4): 396-403, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23601539

ABSTRACT

We present the results of a three-year collaboration between the U.S. Army Edgewood Chemical Biological Center and the U.S. Army Research Laboratory-Aldelphi Laboratory Center on the evaluation of selected nanometallic surfaces developed for the Defense Advanced Research Projects Agency Surface-Enhanced Raman Scattering (SERS) Science and Technology Fundamentals program. The primary role of the two Army labs was to develop the analytical and spectroscopic figures of merit to unambiguously compare the sensitivity and reproducibility of various SERS substrates submitted by the program participants. We present the design and implementation of an evaluation protocol for SERS active surfaces enabling an enhancement value calculation from which different substrates can be directly compared. This method was established to: (1) collect physical and spectral characterization data from the small number of substrates (performer supplied) typically encountered, and (2) account for the complex fabrication technique and varying nature of the substrate platforms encountered within this program.


Subject(s)
Nanostructures/chemistry , Silver/chemistry , Spectrum Analysis, Raman/methods , ROC Curve , Reproducibility of Results
11.
Appl Spectrosc ; 66(6): 636-43, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22732533

ABSTRACT

Raman cross-sections of explosives in solution and in the solid state have been measured using visible and near-infrared excitation via secondary calibration. These measurements are valuable for both fundamental scientific purposes and applications in the standoff detection of explosives. The explosive compounds RDX, HMX, TNT, 2,4-DNT, 2,6-DNT, and ammonium nitrate were measured using discrete excitation wavelengths ranging from 532 nm to 785 nm. A comparison of the spectral features and cross-sections between the solid state and solution was performed. Comparison is also made to cross-sections measured with deep ultraviolet excitation.

12.
Appl Spectrosc ; 66(6): 628-35, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22732532

ABSTRACT

The United States Army and the first responder community are evaluating optical detection systems for the trace detection of hazardous energetic materials. Fielded detection systems must be evaluated with the appropriate material concentrations to accurately identify the residue in theater. Trace levels of energetic materials have been observed in mutable polymorphic phases and, therefore, the systems being evaluated must be able to detect and accurately identify variant sample phases observed in spectral data. In this work, we report on the novel application of drop-on-demand technology for the fabrication of standardized trace 1,3,5-trinitro-1,3,5-triazine (RDX) samples. The drop-on-demand sample fabrication technique is compared both visually and spectrally to the more commonly used drop-and-dry technique. As the drop-on-demand technique allows for the fabrication of trace level hazard materials, concerted efforts focused on characterization of the polymorphic phase changes observed with low concentrations of RDX commonly used in drop-on-demand processing. This information is important when evaluating optical detection technologies using samples prepared with a drop-on-demand inkjet system, as the technology may be "trained" to detect the common bulk α phase of the explosive based on its spectral features but fall short in positively detecting a trace quantity of RDX (ß-phase). We report the polymorphic shifts observed between α- and ß-phases of this energetic material and discuss the conditions leading to the favoring of one phase over the other.


Subject(s)
Explosive Agents/chemistry , Spectrum Analysis, Raman/methods , Triazines/chemistry , Crystallization , Models, Molecular , Printing , Reference Standards , Spectrum Analysis, Raman/standards
13.
Appl Spectrosc ; 65(6): 611-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21639982

ABSTRACT

We have previously demonstrated the use of wide-field Raman chemical imaging (RCI) to detect and identify the presence of trace explosives in contaminated fingerprints. In this current work we demonstrate the detection of trace explosives in contaminated fingerprints on strongly Raman scattering surfaces such as plastics and painted metals using an automated background subtraction routine. We demonstrate the use of partial least squares subtraction to minimize the interfering surface spectral signatures, allowing the detection and identification of explosive materials in the corrected Raman images. The resulting analyses are then visually superimposed on the corresponding bright field images to physically locate traces of explosives. Additionally, we attempt to address the question of whether a complete RCI of a fingerprint is required for trace explosive detection or whether a simple non-imaging Raman spectrum is sufficient. This investigation further demonstrates the ability to nondestructively identify explosives on fingerprints present on commonly found surfaces such that the fingerprint remains intact for further biometric analysis.

14.
J Phys Chem B ; 114(17): 5649-56, 2010 May 06.
Article in English | MEDLINE | ID: mdl-20384383

ABSTRACT

High-pressure Raman spectroscopy has been used to study tris(hydroxymethyl)aminomethane (C(CH(2)OH)(3)NH(2), Tris). Molecules with globular shapes such as Tris have been studied thoroughly as a function of temperature and are of fundamental interest because of the presence of thermal transitions from orientational order to disorder. In contrast, relatively little is known about their high-pressure behavior. Diamond anvil cell techniques were used to generate pressures in Tris samples up to approximately 10 GPa. A phase transition was observed at a pressure of approximately 2 GPa that exhibited relatively slow kinetics and considerable hysteresis, indicative of a first-order transition. The Raman spectrum becomes significantly more complex in the high-pressure phase, indicating increased correlation splitting and significant enhancement in the intensity of some weak, low-pressure phase Raman-active modes.

15.
Anal Chem ; 81(16): 6981-90, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19601631

ABSTRACT

Raman chemical imaging microspectroscopy is evaluated as a technology for waterborne pathogen and bioaerosol detection. Raman imaging produces a three-dimensional data cube consisting of a Raman spectrum at every pixel in a microscope field of view. Binary and ternary mixtures including combinations of polystyrene beads, gram-positive Bacillus anthracis, B. thuringiensis, and B. atrophaeus spores, and B. cereus vegetative cells were investigated by Raman imaging for differentiation and characterization purposes. Bacillus spore aerosol sizes were varied to provide visual proof for corroboration of spectral assignments. Conventional applications of Raman imaging consist of differentiating relatively broad areas of a sample in a microscope field of view. The spectral angle mapping data analysis algorithm was used to compare a library spectrum with experimental spectra from pixels in the microscope field of view. This direct one-to-one matching is straightforward, does not require a training set, is independent of absolute spectral intensity, and only requires univariate statistics. Raman imaging is expanded in its capabilities to differentiate and distinguish between discrete 1-6 microm size bacterial species in single particles, clusters of mixed species, and bioaerosols with interference background particles.


Subject(s)
Aerosols , Spectrum Analysis, Raman/methods , Algorithms , Bacillus/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...