Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21255156

ABSTRACT

On March 10, 2021, a new executive order to lift the mask mandate and allow businesses to open at 100 percent capacity, went into effect in the U.S. state of Texas. This was due to the decrease in the daily number of COVID-19 cases and deaths as the state continues to vaccinate the population. A simple compartmental model was used to assess the implications of the executive order on the ongoing vaccination program. Our simulation shows that approximately 51% of the entire population needs to be fully vaccinated to bring the control reproduction number to a value less than one (threshold condition needed for disease elimination) as compared to the 14.32% that has been fully vaccinated as of March 31, 2021. Hence, the need for an aggressive vaccination program if the state is to open businesses to full capacity and do not require the use of a face mask by the general public.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21254362

ABSTRACT

This study examined four countries Israel, United States, United Kingdom, and Serbia and present their possible vaccination trajectories into 2021. We found that populations in all the four countries are relaxing and taking the advantage of the benefit of an increasingly immunized community hence, experiencing a rising phase of [R] c(t). The United States is of particular concern, due to its fast rising [R]c(t) in comparison to other countries, potentially generating another wave of infection. Due to aggressive vaccination program, continued implementation of restrictive measures, or both, in all countries we analyzed, present a cautiously optimistic outlook at controlling the pandemic toward the latter part of 2021. We also found that despite a significant fraction of the population in selected countries being immunized, no countries other than Israel has its [R]c(t) reached its intrinsic [R]0 value. Based on our proposed methodology for deriving [R]0, our prediction shows that Israels indigenous COVID-19 daily [R]0 is approximately 2.2 based on its latest data.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21250655

ABSTRACT

COVID-19 is a respiratory disease caused by a recently discovered, novel coronavirus, SARS-COV2. The disease has led to over 81 million confirmed cases of COVID-19, with close to 2 million deaths. In the current social climate, the risk of COVID-19 infection is driven by individual and public perception of risk and sentiments. A number of factors influences public perception, including an individuals belief system, prior knowledge about a disease and information about a disease. In this paper, we develop a model for COVID-19 using a system of ordinary differential equations following the natural history of the infection. The model uniquely incorporates social behavioral aspects such as quarantine and quarantine violation. The model is further driven by peoples sentiments (positive and negative) which accounts for the influence of disinformation. Peoples sentiments were obtained by parsing through and analyzing COVID-19 related tweets from Twitter, a social media platform across six countries. Our results show that our model incorporating public sentiments is able to capture the trend in the trajectory of the epidemic curve of the reported cases. Furthermore, our results show that positive public sentiments reduce disease burden in the community. Our results also show that quarantine violation and early discharge of the infected population amplifies the disease burden on the community. Hence, it is important to account for public sentiment and individual social behavior in epidemic models developed to study diseases like COVID-19.

4.
J Math Biol ; 81(1): 113-158, 2020 07.
Article in English | MEDLINE | ID: mdl-32447420

ABSTRACT

Recent dramatic declines in global malaria burden and mortality can be largely attributed to the large-scale deployment of insecticidal-based measures, namely long-lasting insecticidal nets (LLINs) and indoor residual spraying. However, the sustainability of these gains, and the feasibility of global malaria eradication by 2040, may be affected by increasing insecticide resistance among the Anopheles malaria vector. We employ a new differential-equations based mathematical model, which incorporates the full, weather-dependent mosquito lifecycle, to assess the population-level impact of the large-scale use of LLINs, under different levels of Anopheles pyrethroid insecticide resistance, on malaria transmission dynamics and control in a community. Moreover, we describe the bednet-mosquito interaction using parameters that can be estimated from the large experimental hut trial literature under varying levels of effective pyrethroid resistance. An expression for the basic reproduction number, [Formula: see text], as a function of population-level bednet coverage, is derived. It is shown, owing to the phenomenon of backward bifurcation, that [Formula: see text] must be pushed appreciably below 1 to eliminate malaria in endemic areas, potentially complicating eradication efforts. Numerical simulations of the model suggest that, when the baseline [Formula: see text] is high (corresponding roughly to holoendemic malaria), very high bednet coverage with highly effective nets is necessary to approach conditions for malaria elimination. Further, while >50% bednet coverage is likely sufficient to strongly control or eliminate malaria from areas with a mesoendemic malaria baseline, pyrethroid resistance could undermine control and elimination efforts even in this setting. Our simulations show that pyrethroid resistance in mosquitoes appreciably reduces bednet effectiveness across parameter space. This modeling study also suggests that increasing pre-bloodmeal deterrence of mosquitoes (deterring them from entry into protected homes) actually hampers elimination efforts, as it may focus mosquito biting onto a smaller unprotected host subpopulation. Finally, we observe that temperature affects malaria potential independently of bednet coverage and pyrethroid-resistance levels, with both climate change and pyrethroid resistance posing future threats to malaria control.


Subject(s)
Disease Eradication , Insecticide-Treated Bednets , Malaria , Models, Theoretical , Pyrethrins , Animals , Anopheles/drug effects , Insecticide Resistance/drug effects , Insecticides/pharmacology , Malaria/prevention & control , Mosquito Control/instrumentation , Mosquito Control/statistics & numerical data , Mosquito Vectors/drug effects
5.
Preprint in English | medRxiv | ID: ppmedrxiv-20066480

ABSTRACT

A pandemic of a novel Coronavirus emerged in December of 2019 (COVID-19), causing devastating public health impact across the world. In the absence of a safe and effective vaccine or antivirals, strategies for controlling and mitigating the burden of the pandemic are focused on non-pharmaceutical interventions, such as social-distancing, contact-tracing, quarantine, isolation and the use of face-masks in public. We develop a new mathematical model for assessing the population-level impact of the aforementioned control and mitigation strategies. Rigorous analysis of the model shows that the disease-free equilibrium is locally-asymptotically stable if a certain epidemiological threshold, known as the reproduction number (denoted by [R]c), is less than unity. This equilibrium is globally-asymptotically stable, for a special case of the model where quarantined-susceptible individuals do not acquire COVID-19 infection during quarantine, when [R]c is less than unity. The epidemiological consequence of this theoretical result is that, the community-wide implementation of control interventions that can bring (and maintain) [R]c to a value less than unity will lead to the effective control (or elimination) of COVID-19 in the community. Simulations of the model, using data relevant to COVID-19 transmission dynamics in the US state of New York and the entire US, show that the pandemic burden will peak in mid and late April, respectively. The worst-case scenario projections for cumulative mortality (based on baseline levels of interventions) are 105, 100 for New York state and 164, 000 for the entire US by the end of the pandemic. These numbers dramatically decreased by 80% and 64%, respectively, if adherence to strict social-distancing measures is improved and maintained until the end of May or June. The duration and timing of the relaxation or termination of the strict social-distancing measures are crucially-important in determining the future trajectory of the COVID-19 pandemic. This study shows that early termination of the strict social-distancing measures could trigger a devastating second wave with burden similar to those projected before the onset of the strict social-distance measures were implemented. The use of efficacious face-masks (such as surgical masks, with estimated efficacy [≥] 70%) in public could lead to the elimination of the pandemic if at least 70% of the residents of New York state use such masks in public consistently (nationwide, a compliance of at least 80% will be required using such masks). The use of low efficacy masks, such as cloth masks (of estimated efficacy less than 30%), could also lead to significant reduction of COVID-19 burden (albeit, they are not able to lead to elimination). Combining low efficacy masks with improved levels of the other anti-COVID-19 intervention strategies can lead to the elimination of the pandemic. This study emphasizes the important role social-distancing plays in curtailing the burden of COVID-19. Increases in the adherence level of social-distancing protocols result in dramatic reduction of the burden of the pandemic, and the timely implementation of social-distancing measures in numerous states of the US may have averted a catastrophic outcome with respect to the burden of COVID-19. Using face-masks in public (including the low efficacy cloth masks) is very useful in minimizing community transmission and burden of COVID-19, provided their coverage level is high. The masks coverage needed to eliminate COVID-19 decreases if the masks-based intervention is combined with the strict social-distancing strategy.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-20055624

ABSTRACT

Face mask use by the general public for limiting the spread of the COVID-19 pandemic is controversial, though increasingly recommended, and the potential of this intervention is not well understood. We develop a compartmental model for assessing the community-wide impact of mask use by the general, asymptomatic public, a portion of which may be asymptomatically infectious. Model simulations, using data relevant to COVID-19 dynamics in the US states of New York and Washington, suggest that broad adoption of even relatively ineffective face masks may meaningfully reduce community transmission of COVID-19 and decrease peak hospitalizations and deaths. Moreover, mask use decreases the effective transmission rate in nearly linear proportion to the product of mask effectiveness (as a fraction of potentially infectious contacts blocked) and coverage rate (as a fraction of the general population), while the impact on epidemiologic outcomes (death, hospitalizations) is highly nonlinear, indicating masks could synergize with other non-pharmaceutical measures. Notably, masks are found to be useful with respect to both preventing illness in healthy persons and preventing asymptomatic transmission. Hypothetical mask adoption scenarios, for Washington and New York state, suggest that immediate near universal (80%) adoption of moderately (50%) effective masks could prevent on the order of 17-45% of projected deaths over two months in New York, while decreasing the peak daily death rate by 34-58%, absent other changes in epidemic dynamics. Even very weak masks (20% effective) can still be useful if the underlying transmission rate is relatively low or decreasing: In Washington, where baseline transmission is much less intense, 80% adoption of such masks could reduce mortality by 24-65% (and peak deaths 15-69%), compared to 2-9% mortality reduction in New York (peak death reduction 9-18%). Our results suggest use of face masks by the general public is potentially of high value in curtailing community transmission and the burden of the pandemic. The community-wide benefits are likely to be greatest when face masks are used in conjunction with other non-pharmaceutical practices (such as social-distancing), and when adoption is nearly universal (nation-wide) and compliance is high.

SELECTION OF CITATIONS
SEARCH DETAIL
...