Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 977: 176692, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38821164

ABSTRACT

Protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) is a transmembrane tyrosine phosphatase (TP) that serves as a receptor for pleiotrophin (PTN) and vascular endothelial growth factor A 165 (VEGFA165) to regulate endothelial cell migration. In the present work, we identify a PTN peptide fragment (PTN97-110) that inhibits the interaction of PTN and VEGFA165 with PTPRZ1 but not VEGF receptor 2. This peptide abolishes the stimulatory effect of PTN and VEGFA165 on endothelial cell migration, tube formation on Matrigel, and Akt activation in vitro. It also partially inhibits VEGFA165-induced VEGF receptor 2 activation but does not affect ERK1/2 activation and cell proliferation. In vivo, PTN97-110 inhibits or dysregulates angiogenesis in the chick embryo chorioallantoic membrane and the zebrafish assays, respectively. In glioblastoma cells in vitro, PTN97-110 abolishes the stimulatory effect of VEGFA165 on cell migration and inhibits their anchorage-independent growth, suggesting that this peptide might also be exploited in glioblastoma therapy. Finally, in silico and experimental evidence indicates that PTN and VEGFA165 bind to the extracellular fibronectin type-III (FNIII) domain to stimulate cell migration. Collectively, our data highlight novel aspects of the interaction of PTN and VEGFA165 with PTPRZ1, strengthen the notion that PTPRZ1 is required for VEGFA165-induced signaling, and identify a peptide that targets this interaction and can be exploited for the design of novel anti-angiogenic and anti-glioblastoma therapeutic approaches.


Subject(s)
Carrier Proteins , Cell Movement , Cytokines , Human Umbilical Vein Endothelial Cells , Neovascularization, Physiologic , Receptor-Like Protein Tyrosine Phosphatases, Class 5 , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Humans , Animals , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism , Cell Movement/drug effects , Cytokines/metabolism , Carrier Proteins/metabolism , Carrier Proteins/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Neovascularization, Physiologic/drug effects , Chick Embryo , Zebrafish , Protein Binding , Cell Proliferation/drug effects , Cell Line, Tumor , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Neovascularization, Pathologic , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/drug therapy , Angiogenesis
2.
Int J Cancer ; 153(5): 1051-1066, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37260355

ABSTRACT

Protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) is a transmembrane tyrosine phosphatase (TP) expressed in endothelial cells and required for stimulation of cell migration by vascular endothelial growth factor A165 (VEGFA165 ) and pleiotrophin (PTN). It is also over or under-expressed in various tumor types. In this study, we used genetically engineered Ptprz1-/- and Ptprz1+/+ mice to study mechanistic aspects of PTPRZ1 involvement in angiogenesis and investigate its role in lung adenocarcinoma (LUAD) growth. Ptprz1-/- lung microvascular endothelial cells (LMVEC) have increased angiogenic features compared with Ptprz1+/+ LMVEC, in line with the increased lung angiogenesis and the enhanced chemically induced LUAD growth in Ptprz1-/- compared with Ptprz1+/+ mice. In LUAD cells isolated from the lungs of urethane-treated mice, PTPRZ1 TP inhibition also enhanced proliferation and migration. Expression of beta 3 (ß3 ) integrin is decreased in Ptprz1-/- LMVEC, linked to enhanced VEGF receptor 2 (VEGFR2), c-Met tyrosine kinase (TK) and Akt kinase activities. However, only c-Met and Akt seem responsible for the enhanced endothelial cell activation in vitro and LUAD growth and angiogenesis in vivo in Ptprz1-/- mice. A selective PTPRZ1 TP inhibitor, VEGFA165 and PTN also activate c-Met and Akt in a PTPRZ1-dependent manner in endothelial cells, and their stimulatory effects are abolished by the c-Met TK inhibitor (TKI) crizotinib. Altogether, our data suggest that low PTPRZ1 expression is linked to worse LUAD prognosis and response to c-Met TKIs and uncover for the first time the role of PTPRZ1 in mediating c-Met activation by VEGFA and PTN.


Subject(s)
Adenocarcinoma of Lung , Receptor-Like Protein Tyrosine Phosphatases, Class 5 , Animals , Mice , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Endothelial Cells/metabolism , Protein Tyrosine Phosphatases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Tyrosine/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism , Proto-Oncogene Proteins c-met/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...