Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
BMC Microbiol ; 24(1): 47, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38302869

ABSTRACT

BACKGROUND: Candidatus Ornithobacterium hominis (O. hominis), which was identified in nasopharyngeal swabs from Egypt, has been associated with respiratory disorders in humans. O. hominis, a recently identified member of the Flavobacteriaceae family, belongs to the largest family within the Bacteroidetes phylum. This family includes hundreds of species and 90 genera, including major human pathogens such as Capnocytophaga canimorsus and Elizabethkingia meningoseptica. Herein, we presented two draft genome assemblies of O. hominis that were extracted from metagenomic data using the Illumina sequencing method. The alignment of reads against the O. hominis genome was accomplished using BLASTN, and the reads with significant hits were extracted using Seqtk and assembled using SPAdes. The primary goal of this study was to obtain a more profound understanding of the genomic landscape of O. hominis, with an emphasis on identifying the associated virulence, antimicrobial genes, and distinct defense mechanisms to shed light on the potential role of O. hominis in human respiratory infections. RESULTS: The genome size was estimated to be 1.84 Mb, including 1,931,660 base pairs (bp), with 1,837 predicted coding regions and a G+C content of 35.62%. Genes encoding gliding motility, antibiotic resistance (20 genes), and the toxA gene were all included in the genome assembly. Gliding motility lipoproteins (GldD, GldJ, GldN, and GldH) and the gliding motility-associated ABC transporter substrate-binding protein, which acts as a crucial virulence mechanism in Flavobacterium species, were identified. The genome contained unique genes encoding proteins, such as the ParE1 toxin that defend against the actions of quinolone and other antibiotics. The cobalt-zinc-cadmium resistance gene encoding the protein CzcB, which is necessary for metal resistance, urease regulation, and colonization, was also detected. Several multidrug resistance genes encoding proteins were identified, such as MexB, MdtK, YheI, and VanC. CONCLUSION: Our study focused on identifying virulence factors, and antimicrobial resistance genes present in the core genome of O. hominis. These findings provide valuable insights into the potential pathogenicity and antibiotic susceptibility of O. hominis.


Subject(s)
Ornithobacterium , Humans , Anti-Bacterial Agents/pharmacology , Egypt , Drug Resistance, Bacterial/genetics , Genes, Bacterial , Genome, Bacterial , Drug Resistance, Multiple, Bacterial/genetics
2.
Sci Rep ; 13(1): 20980, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38017083

ABSTRACT

Streptococcus agalactiae (S. agalactiae), group B Streptococcus (GBS), a major cause of infection in a wide variety of diseases, have been compared in different human and animal sources. We aimed to compare the bacterial proteome and metabolome profiles of human and animal S. agalactiae strains to delineate biological interactions relevant to infection. With the innovative advancement in mass spectrometry, a comparative result between both strains provided a solid impression of different responses to the host. For instance, stress-related proteins (Asp23/Gls24 family envelope stress response protein and heat shock protein 70), which play a role in the survival of GBS under extreme environmental conditions or during treatment, are highly expressed in human and animal strains. One human strain contains ꞵ-lactamase (serine hydrolase) and biofilm regulatory protein (lytR), which are important virulence regulators and potential targets for the design of novel antimicrobials. Another human strain contains the aminoglycosides-resistance bifunctional AAC/APH (A0A0U2QMQ5) protein, which confers resistance to almost all clinically used aminoglycosides. Fifteen different metabolites were annotated between the two groups. L-aspartic acid, ureidopropionic acid, adenosine monophosphate, L-tryptophan, and guanosine monophosphate were annotated at higher levels in human strains. Butyric acid, fumaric acid, isoleucine, leucine, and hippuric acid have been found in both human and animal strains. Certain metabolites were uniquely expressed in animal strains, with fold changes greater than 2. For example, putrescine modulates biofilm formation. Overall, this study provides biological insights into the substantial possible bacterial response reflected in its macromolecular production, either at the proteomic or metabolomic level.


Subject(s)
Streptococcal Infections , Streptococcus agalactiae , Humans , Animals , Proteomics , Streptococcal Infections/microbiology , Virulence , Aminoglycosides
4.
Front Immunol ; 14: 1222428, 2023.
Article in English | MEDLINE | ID: mdl-37520555

ABSTRACT

Introduction: Controlling pulmonary Mycobacterium avium complex (MAC) disease is difficult because there is no way to know the clinical stage accurately. There have been few attempts to use cell-mediated immunity for diagnosing the stage. The objective of this study was to characterize cytokine profiles of CD4+T and CD19+B cells that recognize various Mycobacterium avium-associated antigens in different clinical stages of MAC. Methods: A total of 47 MAC patients at different stages based on clinical information (14 before-treatment, 16 on-treatment, and 17 after-treatment) and 17 healthy controls were recruited. Peripheral blood mononuclear cells were cultured with specific antigens (MAV0968, 1160, 1276, and 4925), and the cytokine profiles (IFN-γ, TNF-α, IL-2, IL-10, IL-13, and IL-17) of CD4+/CD3+ and CD19+ cells were analyzed by flow cytometry. Results: The response of Th1 cytokines such as IFN-γ and TNF-α against various antigens was significantly higher in both the on-treatment and after-treatment groups than in the before-treatment group and control (P < 0.01-0.0001 and P < 0.05-0.0001). An analysis of polyfunctional T cells suggested that the presence of IL-2 is closely related to the stage after the start of treatment (P = 0.0309-P < 0.0001) and is involved in memory function. Non-Th1 cytokines, such as IL-10 and IL-17, showed significantly higher responses in the before-treatment group (P < 0.0001 and P < 0.01-0.0001). These responses were not observed with purified protein derivative (PPD). CD19+B cells showed a response similar to that of CD4+T cells. Conclusion: There is a characteristic cytokine profile at each clinical stage of MAC.


Subject(s)
Lung Diseases , Mycobacterium avium-intracellulare Infection , Humans , Mycobacterium avium Complex , Interleukin-10 , Interleukin-17 , Interleukin-2/therapeutic use , Tumor Necrosis Factor-alpha/therapeutic use , Leukocytes, Mononuclear , Cytokines
5.
Biochimie ; 214(Pt B): 216-227, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37499896

ABSTRACT

Antimicrobial peptides (AMPs) are essential for defence against pathogens in all living organisms and possessed activities against bacteria, fungi, viruses, parasites and even cancer cells. AMPs are short peptides containing 12-100 amino acids conferring a net positive charge and an amphiphilic property in most cases. Although, anionic AMPs also exist. AMPs can be classified based on the types of secondary structures, charge, hydrophobicity, amino acid composition, length, etc. Their mechanism of action usually includes a membrane disruption process through pore formation (three different models have been described, barrel-stave, toroidal or carpet model) but AMPs can also penetrate and impair intracellular functions. Besides their activity against pathogens, they have also shown immunomodulatory properties in complex scenarios through many different interactions. The aim of this review to summarize knowledge about AMP's and discuss the potential application of AMPs as therapeutics, the challenges due to their limitations, including their susceptibility to degradation, the potential generation of AMP resistance, cost, etc. We also discuss the current FDA-approved drugs based on AMPs and strategies to circumvent natural AMPs' limitations.


Subject(s)
Antimicrobial Cationic Peptides , Antimicrobial Peptides , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/therapeutic use , Antimicrobial Cationic Peptides/chemistry , Fungi , Bacteria/metabolism , Anti-Bacterial Agents
6.
Mar Genomics ; 68: 101017, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36738602

ABSTRACT

Many secondary metabolites with medicinal potential are produced by various animals, plants, and microorganisms. Because marine creatures have a greater proportion of unexplored biodiversity than their terrestrial counterparts, they have emerged as a key research focus for the discovery of natural product drugs. Several studies have revealed that bacteria isolated from Chromodoris quadricolor (C. quadricolor) have antibiotic and anticancer properties. In this study, meta-transcriptomics and meta-proteimic analysis were combined to identify biosynthetic gene clusters (BGCs) in the symbiotic bacteria of the C. quadricolor mantle. Symbiotic bacteria were separated from the host by differential pelleting, and then total RNA was extracted, purified, and sequenced. Meta-transcriptomic analysis was done using different natural product mining tools to identify biosynthetic transcript clusters (BTCs). Furthermore, proteins were extracted from the same cells and then analyzed by LC-MS. A meta-proteomic analysis was performed to find proteins that are translated from BCGs. Finally, only 227 proteins have been translated from 40,742 BTCs. The majority of these clusters were polyketide synthases (PKSs) with antibacterial activity. Ten novel potential metabolic clusters with the ability to produce antibiotics have been identified in Novosphingobium and Microbacteriaceae, including members of the ribosomal synthesized and post-translationally modified peptides (RiPPs), polyketide synthases, and others. We realized that using a meta-proteomic approach to identify BGCs that have already been translated makes it easier to concentrate on BGCs that are utilized by bacteria. The symbiotic bacteria associated with C. quadricolor could be a source of novel antibiotics.


Subject(s)
Biological Products , Proteomics , Animals , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Bacteria/genetics , Anti-Bacterial Agents/metabolism , Multigene Family
7.
Front Immunol ; 13: 955168, 2022.
Article in English | MEDLINE | ID: mdl-36544758

ABSTRACT

More than two years after the start of COVID-19 pandemic, Africa still lags behind in terms vaccine distribution. This highlights the predicament of Africa in terms of vaccine development, deployment, and sustainability, not only for COVID-19, but for other major infectious diseases that plague the continent. This opinion discusses the challenges Africa faces in its race to vaccinate its people, and offers recommendations on the way forward. Specifically, to get out of the ongoing vaccine shortage trap, Africa needs to diversify investment not only to COVID-19 but also other diseases that burden the population. The continent needs to increase its capacity to acquire vaccines more equitably, improve access to technologies to enable local manufacture of vaccines, increase awareness on vaccines both in rural and urban areas to significantly reduce disease incidence of COVID-19 and as well as other prevalent diseases on the African continent such as HIV and TB. Such efforts will go a long way to reduce the disease burden in Africa.


Subject(s)
COVID-19 , Vaccines , Humans , Pandemics/prevention & control , Vaccinology , COVID-19/epidemiology , COVID-19/prevention & control , Africa/epidemiology
8.
Molecules ; 27(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36557948

ABSTRACT

In our continuous study for some African plants as a source for antitrypanosomally and cytotoxic active drugs, nine different plants belonging to the Crassulaceae family have been selected for the present study. Sedum sieboldii leaves extract showed an antitrypanosomal activity against Trypanosoma brucei with an IC50 value of 8.5 µg/mL. In addition, they have cytotoxic activities against (HCT-116), (HEPG-2) and (MCF-7), with IC50 values of 28.18 ± 0.24, 22.05 ± 0.66, and 26.47 ± 0.85 µg/mL, respectively. Furthermore, the extract displayed inhibition against Topoisomerase-1 with an IC50 value of 1.31 µg/mL. It showed the highest phenolics and flavonoids content among the other plants' extracts. In order to identify the secondary metabolites which may be responsible for such activities, profiling of the polar secondary metabolites of S. sieboldii extract via Ultra-Performance Liquid Chromatography coupled to High-Resolution QTOF-MS operated in negative and positive ionization modes, which revealed the presence of 46 metabolites, including flavonoids, phenolic acids, anthocyanidins, coumarin, and other metabolites.


Subject(s)
Antineoplastic Agents , Tandem Mass Spectrometry , Humans , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , Antineoplastic Agents/pharmacology , Flavonoids/chemistry , African People
9.
PLoS One ; 17(3): e0265884, 2022.
Article in English | MEDLINE | ID: mdl-35320327

ABSTRACT

Klebsiella pneumoniae is considered a threat to public health especially due to multidrug resistance emergence. It is largely oligoclonal based on multi-locus sequence typing (MLST); in Egypt, ST 627 was recently detected. Despites the global dissemination of this ST, there is still paucity of information about it. Herein, we used 4 K. pneumoniae ST627 for whole genome sequencing utilizing an Illumina MiSeq platform. Genome sequences were examined for resistance and virulence determinants, capsular types, plasmids, insertion sequences, phage regions, and Clustered Regularly Interspaced Palindromic Repeats (CRISPR) regions using bioinformatic analysis. The molecular characterization revealed 15 and 65 antimicrobial resistance and virulence genes, respectively. Resistance genes such as tet(D), aph(3'')-Ib, aph(6)-Id, blaTEM-234, fosA, and fosA6; were mainly responsible for tetracycline, aminoglycoside, and fosfomycin resistance; respectively. The capsular typing revealed that the four strains are KL-24 and O1v1. One plasmid was found in all samples known as pC17KP0052-1 and another plasmid with accession no. NZ_CP032191.1 was found only in K90. IncFIB(K) and IncFII(K) are two replicons found in all samples, while ColRNAI replicon was found only in K90. Entero P88, Salmon SEN5, and Klebsi phiKO2 intact phage regions were identified. All samples harbored CRISPR arrays including CRISPR1 and CRISPR2. Our results shed light on critical tasks of mobile genetic elements in ST 627 in antibiotic resistance spreading.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial/genetics , Egypt , Humans , Klebsiella Infections/drug therapy , Microbial Sensitivity Tests , Multilocus Sequence Typing , Plasmids/genetics , Whole Genome Sequencing/methods , beta-Lactamases/genetics
10.
DNA Cell Biol ; 41(1): 30-33, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34647792

ABSTRACT

With the coronavirus disease of 2019 (COVID-19) becoming a full-blown outbreak in Africa, coupled with many other challenges faced on the African continent, it is apparent that Africa continues to need diagnostics to enable case identification and recovery to this and future challenges. With the slow vaccination rates across the continent, reliable diagnostic tests will be in demand, likely for years to come. Thus, access to reliable diagnostic tools to detect the severe acute respiratory syndrome of the coronavirus-2 (SARS-CoV-2), the virus responsible for COVID-19, remain a critical pillar to monitor and contain new waves of COVID-19. Increasing the local capacity to manufacture and roll-out vaccines and decentralized COVID-19 testing are paramount for fighting the pandemic in Africa.


Subject(s)
COVID-19 Testing , Humans
11.
Front Cell Infect Microbiol ; 11: 761417, 2021.
Article in English | MEDLINE | ID: mdl-34888259

ABSTRACT

A major increase of bacterial resistance to colistin, a last-resort treatment for severe infections, was observed globally. Using colistin in livestock rearing is believed to be the ground of mobilized colistin resistance (mcr) gene circulation and is of crucial concern to public health. This study aimed to determine the frequency and virulence characteristics of colistin-resistant Gram-negative bacteria from the milk of mastitic cows and raw unpasteurized milk in Egypt. One hundred and seventeen strains belonging to Enterobacteriaceae (n = 90), Pseudomonas aeruginosa (n = 10), and Aeromonas hydrophila (n = 17) were screened for colistin resistance by antimicrobial susceptibility testing. The genetic characteristics of colistin-resistant strains were investigated for mcr-1-9 genes, phylogenetic groups, and virulence genes. Moreover, we evaluated four commonly used biocides in dairy farms for teat disinfection toward colistin-resistant strains. Multidrug-resistant (MDR) and extensive drug-resistant (XDR) phenotypes were detected in 82.91% (97/117) and 3.42% (4/117) of the isolates, respectively. Of the 117 tested isolates, 61 (52.14%) were colistin resistant (MIC >2 mg/L), distributed as 24/70 (34.29%) from clinical mastitis, 10/11 (90.91%) from subclinical mastitis, and 27/36 (75%) from raw milk. Of these 61 colistin-resistant isolates, 47 (19 from clinical mastitis, 8 from subclinical mastitis, and 20 from raw milk) harbored plasmid-borne mcr genes. The mcr-1 gene was identified in 31.91%, mcr-2 in 29.79%, mcr-3 in 34.04%, and each of mcr-4 and mcr-7 in 2.13% of the colistin-resistant isolates. Among these isolates, 42.55% (20/47) were E. coli, 21.28% (10/47) A. hydrophila, 19.12% (9/47) K. pneumoniae, and 17.02% (8/47) P. aeruginosa. This is the first report of mcr-3 and mcr-7 in P. aeruginosa. Conjugation experiments using the broth-mating technique showed successful transfer of colistin resistance to E. coli J53-recipient strain. Different combinations of virulence genes were observed among colistin-resistant isolates with almost all isolates harboring genes. Hydrogen peroxide has the best efficiency against all bacterial isolates even at a low concentration (10%). In conclusion, the dissemination of mobile colistin resistance mcr gene and its variants between MDR- and XDR-virulent Gram-negative isolates from dairy cattle confirms the spread of mcr genes at all levels; animals, humans, and environmental, and heralds the penetration of the last-resort antimicrobial against MDR bacteria. Consequently, a decision to ban colistin in food animals is urgently required to fight XDR and MDR bacteria.


Subject(s)
Colistin , Escherichia coli Proteins , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Female , Microbial Sensitivity Tests , Milk , Phylogeny , Plasmids/genetics , Virulence/genetics
12.
Front Microbiol ; 12: 770813, 2021.
Article in English | MEDLINE | ID: mdl-34956131

ABSTRACT

Antimicrobial resistance is a major concern in the dairy industry. This study investigated the prevalence, antimicrobial resistance phenotypes, and genome sequencing of Gram-negative bacteria isolated from clinical (n = 350) and subclinical (n = 95) bovine mastitis, and raw unpasteurized milk (n = 125). Klebsiella pneumoniae, Aeromonas hydrophila, Enterobacter cloacae (100% each), Escherichia coli (87.78%), and Proteus mirabilis (69.7%) were the most prevalent multidrug-resistant (MDR) species. Extensive drug-resistance (XDR) phenotype was found in P. mirabilis (30.30%) and E. coli (3.33%) isolates. Ten isolates (four E. coli, three Klebsiella species and three P. mirabilis) that displayed the highest multiple antibiotic resistance (MAR) indices (0.54-0.83), were exposed to whole-genome sequencing (WGS). Two multilocus sequence types (MLST): ST2165 and ST7624 were identified among the sequenced E. coli isolates. Three E. coli isolates (two from clinical mastitis and one from raw milk) belonging to ST2165 showed similar profile of plasmid replicon types: IncFIA, IncFIB, IncFII, and IncQ1 with an exception to an isolate that contained IncR, whereas E. coli ST7624 showed a different plasmid profile including IncHI2, IncHI2A, IncI1α, and IncFII replicon types. ResFinder findings revealed the presence of plasmid-mediated colistin mcr-10 and fosfomycin fosA5 resistance genes in a K. pneumoniae (K1) isolate from bovine milk. Sequence analysis of the reconstructed mcr-10 plasmid from WGS of K1 isolate, showed that mcr-10 gene was bracketed by xerC and insertion sequence IS26 on an IncFIB plasmid. Phylogenetic analysis revealed that K1 isolate existed in a clade including mcr-10-harboring isolates from human and environment with different STs and countries [United Kingdom (ST788), Australia (ST323), Malawi (ST2144), Myanmar (ST705), and Laos (ST2355)]. This study reports the first emergence of K. pneumoniae co-harboring mcr-10 and fosA5 genes from bovine milk in the Middle East, which constitutes a public health threat and heralds the penetration of the last-resort antibiotics. Hence, prudent use of antibiotics in both humans and animals and antimicrobial surveillance plans are urgently required.

14.
Molecules ; 26(3)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499325

ABSTRACT

Zygophyllum coccineum, an edible halophytic plant, is part of the traditional medicine chest in the Mediterranean region for symptomatic relief of diabetes, hypertension, wound healing, burns, infections, and rheumatoid arthritis pain. The current study aimed to characterize Z. coccineum phytoconstituents, and the evaluations of the anti-microbial-biofilm, and anti-cancers bioactivities of the plant's mother liquor, i.e., aqueous-ethanolic extract, and its subsequent fractions. The in silico receptors interaction feasibility of Z. coccineum major constituents with Staph GyraseB, and human topoisomerase-IIß (h-TOP-IIß) were conducted to confirm the plant's anti-microbial and anti-cancer biological activities. Thirty-eight secondary metabolites of flavonoids, stilbene, phenolic acids, alkaloids, and coumarin classes identified by LC-ESI-TOF-MS spectrometric analysis, and tiliroside (kaempferol-3-O-(6''''-p-coumaroyl)-glucoside, 19.8%), zygophyloside-F (12.78%), zygophyloside-G (9.67%), and isorhamnetin-3-O-glucoside (4.75%) were identified as the major constituents. A superior biofilm obliteration activity established the minimum biofilm eradication concentration (MBEC) for the chloroform fraction at 3.9-15.63 µg/mL, as compared to the positive controls (15.63-31.25 µg/mL) against all the microbial strains that produced the biofilm under study, except the Aspergillus fumigatus. The aqueous-ethanolic extract showed cytotoxic effects with IC50 values at 3.47, 3.19, and 2.27 µg/mL against MCF-7, HCT-116, and HepG2 cell-lines, respectively, together with the inhibition of h-TOP-IIß with IC50 value at 45.05 ng/mL in comparison to its standard referral inhibitor (staurosporine, IC50, 135.33 ng/mL). This conclusively established the anti-cancer activity of the aqueous-ethanolic extract that also validated by in silico receptor-binding predicted energy levels and receptor-site docking feasibility of the major constituents of the plant's extract. The study helped to authenticate some of the traditional phytomedicinal properties of the anti-infectious nature of the plant.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Zygophyllum/chemistry , Biofilms/drug effects , Computer Simulation , DNA Gyrase/chemistry , DNA Topoisomerases, Type II/chemistry , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Gas Chromatography-Mass Spectrometry , HCT116 Cells , Hep G2 Cells , Humans , In Vitro Techniques , MCF-7 Cells , Medicine, Traditional , Mediterranean Region , Molecular Docking Simulation , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Poly-ADP-Ribose Binding Proteins/antagonists & inhibitors , Poly-ADP-Ribose Binding Proteins/chemistry , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology
15.
Molecules ; 26(2)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33435591

ABSTRACT

Mycobacterium avium complex (MAC) is the most common non-tuberculous mycobacterium (NTM) and causes different types of pulmonary diseases. While genomic and transcriptomic analysis of Mycobacterium avium 104 (M. avium 104) has been extensive, little is known about the proteomics of M. avium 104. We utilized proteomics technology to analyze the changes in the whole proteome of M. avium 104 during exponential and stationary growth phases. We found 12 dys-regulated proteins; the up-regulated protein hits in the stationary phase were involved in aminopeptidase, choline dehydrogenase, oxidoreductase, and ATP binding, while the down-regulated proteins in the stationary phase were acetyl-CoA acetyltransferase, universal stress protein, catalase peroxidase, and elongation factor (Tu). The differently expressed proteins between exponential and stationary phases were implicated in metabolism and stress response, pointing to the functional adaptation of the cells to the environment. Proteomic analysis in different growth phases could participate in understanding the course of infection, the mechanisms of virulence, the means of survival, and the possible targets for treatment.


Subject(s)
Adaptation, Physiological , Bacterial Proteins/metabolism , Environment , Mycobacterium/growth & development , Mycobacterium/metabolism , Proteome/metabolism , Humans , Mycobacterium/isolation & purification , Proteome/analysis
16.
OMICS ; 25(1): 60-71, 2021 01.
Article in English | MEDLINE | ID: mdl-33095094

ABSTRACT

In 1869, the Suez Canal was opened, which brought the waters of the Mediterranean and the Red Sea into direct contact. Notably, the Suez Canal was constructed for navigation purposes without focusing on the ecological impacts. The Suez Canal paved the way for species migration from the Red Sea to the Mediterranean Sea through Lessepsian migration, named after Ferdinand de Lesseps, while the migration from the Mediterranean Sea to the Red Sea is called the anti-Lessepsian migration. It has been argued in the past that the migrating species had negative consequences for the host environment as well as of humans. Few studies to date have attempted to map the microorganism migration problem because the traditional ways of measuring the community's richness and dissimilarities failed to provide enough detection of the migrating taxa. We collected 22 seawater samples from different locations in Egypt, in relationship to the migration across and to/from the Suez Canal. The V3-V4 regions of 16s genes were amplified and sequenced by the next generation Illumina MiSeq sequencer. Bioinformatics analysis revealed 15 taxa that migrated from the Mediterranean Sea to the Red Sea (i.e., anti-Lessepsian migration) such as the genera Fluvicola, HTCC2207, and Persicirhabdus. The family OCS155 is the only one that migrated from the Red Sea to the Mediterranean Sea (Lessepsian migration). Seven anti-Lessepsian migrants colonized the Suez Canal more than the Mediterranean Sea such as the genera Marinobacter and Halomonas. These findings collectively suggest that the anti-Lessepsian migration is more predominant than the Lessepsian migration in the bacterial community. This study paves the way for future research questions as well. For example, why is the anti-Lessepsian migration more common than the Lessepsian route in bacteria? Why do certain taxa stop migration at the Suez Canal, and why do certain taxa present in higher frequencies in the Suez Canal? Which taxa continue migration to the Indian Ocean and the Atlantic Ocean, and what is the impact of the anti-Lessepsian migration on the bacterial community? Understanding microbial diversity in a context of microorganism migration across seas and oceans remains a prime topic in biodiversity research and systems science.


Subject(s)
Bacteria , Biodiversity , Ecosystem , Water Microbiology , Bacteria/classification , Egypt , Indian Ocean , Mediterranean Sea
17.
Comp Immunol Microbiol Infect Dis ; 73: 101553, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33166715

ABSTRACT

Bovine tuberculosis is a devastating illness in cattle and it has the ability to transmit causing severe troubles in human. Mycobacterium bovis (M. bovis) infection in human indeed becomes increasingly critical especially in developing countries. Early diagnosis is very important to control and limit its spreading. The aim of this study is to examine the genetic differentiation and possibilities of transmission between cattle and human. Lymph node and sputum samples were collected from cattle and patients showing tuberculin test positive; respectively for phenotypic identification and for molecular examination by detection of IS6110 and oxyR genes which are specific for MTC and M. bovis; respectively. The phenotypic identification of sputum samples showed 80 % positive by both stain and culture, while, lymph nodes revealed 66 % and 84 % positive by stain and culture method; respectively. Alignment of oxyR gene sequences of M. tuberculosis and M. bovis was used as a feature for differentiation between the 2 genes in these two genetically closely similar microorganisms showed 99 % identities between the 2 genes. Alignment and phylogenetic analysis of Mpb70 gene sequences from animal and human origin showed very high relatedness (99.32 %) to each other confirming that the zoonotic transmission is most probably occurred.


Subject(s)
Bacterial Zoonoses/microbiology , Mycobacterium bovis/isolation & purification , Mycobacterium tuberculosis/isolation & purification , Tuberculosis, Bovine/microbiology , Animals , Bacterial Zoonoses/epidemiology , Cattle , DNA, Bacterial/chemistry , DNA, Bacterial/isolation & purification , Egypt/epidemiology , Humans , Mycobacterium bovis/classification , Mycobacterium bovis/genetics , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/genetics , Phenotype , Phylogeny , Sequence Alignment , Sputum/microbiology , Tuberculosis, Bovine/diagnosis , Tuberculosis, Bovine/epidemiology , Tuberculosis, Bovine/transmission
18.
J Proteomics ; 229: 103944, 2020 10 30.
Article in English | MEDLINE | ID: mdl-32822829

ABSTRACT

Atopic dermatitis (AD) is a relapsing, chronic, and inflammatory skin disorder. Its causes remain unclear. Here, we reported the first proteome study of the bacterial community in AD patients. Bacterial community in 7 patients and 1 healthy control using bottom-up proteomics were examined starting with in-solution digestion followed by purification steps with subsequent analysis using LC-MS/MS and ended with data processing and bioinformatic analysis. Overall, great bacterial changes between patient samples and healthy one were noticed with the presence of Staphylococcus aureus, Aeromonas hydrophila, and Shewanella species, and others that were present uniquely in patient samples suggesting their role in AD. Additionally, detection of some important proteins that trigger bacterial pathogenesis and the immune system such as enolase, glyceraldehyde-3-phosphate, Chaperone proteins DnaK and HtpG beside protein pathways needed for bacterial growth and pathogenesis like chaperones and folding catalysts; and Energy metabolism. These new findings of the microbiome and detected proteins could start a new era of proteomics to study the bacterial community as a whole and detect the way it interacts with each other and with the host. SIGNIFICANCE: This paper would represent a reference work for investigations on microbiota that present on AD, from both a microbiological and a functional proteomic point of view. We focused on analysisng bacteria community and proteins produced and its role in the disease, highlighting some functional characteristics of certain proteins and discussing its potential role in AD.


Subject(s)
Dermatitis, Atopic , Bacteria , Chromatography, Liquid , Humans , Proteomics , Skin , Tandem Mass Spectrometry
19.
OMICS ; 24(9): 541-550, 2020 09.
Article in English | MEDLINE | ID: mdl-32758003

ABSTRACT

Marine and ecosystem pollution due to oil spills can be addressed by identifying the aromatic hydrocarbon (HC)-degrading microorganisms and their responsible genes for biodegradation. Moreover, screening for genes coding for secondary metabolites is invaluable for drug discovery. We report here, the first metagenomic study investigating the shotgun metagenome of the Suez Canal water sampled at Ismailia city concerning its aromatic HC degradation potential in comparison to the seawater sampled at Halayeb city at the Red Sea and Sallum city at the Mediterranean Sea. Moreover, for an in-depth understanding of marine biotechnology applications, we screened for the polyketide synthases (PKSs) and nonribosomal peptide synthetase (NRPS) domains in those three metagenomes. By mapping against functional protein databases, we found that 13, 6, and 3 gene classes from the SEED database; 2, 1, and 3 gene classes from the EgGNOG; and 5, 4, and 2 genes from the InterPro2GO database were identified to be differentially abundant among Halayeb, Ismailia, and Sallum metagenomes, respectively. Also, Halayeb metagenome in the Red Sea reported the highest number of PKS domains showing higher potential in secondary metabolite production in addition to the oil degradation potential.


Subject(s)
Hydrocarbons, Aromatic/metabolism , Metagenome , Metagenomics , Microbiota , Secondary Metabolism , Water Microbiology , Aquatic Organisms/genetics , Aquatic Organisms/metabolism , Databases, Genetic , Ecosystem , Indian Ocean , Mediterranean Sea , Metagenomics/methods , Metagenomics/standards , Microbiota/genetics , Seawater , Water Pollution
20.
Microbiol Res ; 234: 126423, 2020 Jan 25.
Article in English | MEDLINE | ID: mdl-32078895

ABSTRACT

Klebsiella pneumoniae is a pathogenic bacterium that is responsible for a wide range of infections in humans. An increased rate of infections caused by multi-drug-resistant K. pneumoniae has been noted in the last two decades. The association between antimicrobial resistance and virulence is an important topic of study. Genomic tools have been used widely for the detection of virulence. In our study, we used proteomic analysis with mass spectrometry and bioinformatics tools to explore the virulence factors of both ESBL-producing and non-ESBL-producing K. pneumoniae and to determine the association between virulence and antimicrobial resistance in these clinical isolates. We have revealed different proteomic profiles and different pathways between the ESBL- and non-ESBL-producing groups. Many proteins involved in stress responses have been reported in the shared proteome between ESBL-and non-ESBL producers, such as ElaB protein, Lon protease, and universal stress proteins G and A. The virulence and pathogenicity of ESBL-producing bacteria were stronger than those of the non-ESBL-producing bacteria. Several unique virulence determinants were identified in ESBL-producing K. pneumoniae, such as proteins with lyase, catalase, isochorismatase, and oxidoreductase activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...