Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Theranostics ; 14(7): 2934-2945, 2024.
Article in English | MEDLINE | ID: mdl-38773971

ABSTRACT

Rationale: Nucleic acid constructs are commonly used for vaccination, immune stimulation, and gene therapy, but their use in cancer still remains limited. One of the reasons is that systemic delivery to tumor-associated antigen-presenting cells (dendritic cells and macrophages) is often inefficient, while off-target nucleic acid-sensing immune pathways can stimulate systemic immune responses. Conversely, certain carbohydrate nanoparticles with small molecule payloads have been shown to target these cells efficiently in the tumor microenvironment. Yet, nucleic acid incorporation into such carbohydrate-based nanoparticles has proven challenging. Methods: We developed a novel approach using cross-linked bis succinyl-cyclodextrin (b-s-CD) nanoparticles to efficiently deliver nucleic acids and small-molecule immune enhancer to phagocytic cells in tumor environments and lymph nodes. Our study involved incorporating these components into the nanoparticles and assessing their efficacy in activating antigen-presenting cells. Results: The multi-modality immune stimulators effectively activated antigen-presenting cells and promoted anti-tumor immunity in vivo. This was evidenced by enhanced delivery to phagocytic cells and subsequent immune response activation in tumor environments and lymph nodes. Conclusion: Here, we describe a new approach to incorporating both nucleic acids and small-molecule immune enhancers into cross-linked bis succinyl-cyclodextrin (b-s-CD) nanoparticles for efficient delivery to phagocytic cells in tumor environments and lymph nodes in vivo. These multi-modality immune stimulators can activate antigen-presenting cells and foster anti-tumor immunity. We argue that this strategy can potentially be used to enhance anti-tumor efficacy.


Subject(s)
Dendritic Cells , Nanoparticles , Nucleic Acids , Dendritic Cells/immunology , Dendritic Cells/drug effects , Animals , Nucleic Acids/administration & dosage , Mice , Nanoparticles/chemistry , Cyclodextrins/chemistry , Mice, Inbred C57BL , Humans , Cell Line, Tumor , Tropism , Tumor Microenvironment/drug effects , Lymph Nodes/immunology , Female , Neoplasms/therapy , Neoplasms/immunology
2.
Adv Sci (Weinh) ; 11(15): e2309026, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342608

ABSTRACT

Tumor-associated macrophages (TAM) are a diverse population of myeloid cells that are often abundant and immunosuppressive in human cancers. CXCL9Hi TAM has recently been described to have an antitumor phenotype and is linked to immune checkpoint response. Despite the emerging understanding of the unique antitumor TAM phenotype, there is a lack of TAM-specific therapeutics to exploit this new biological understanding. Here, the discovery and characterization of multiple small-molecule enhancers of chemokine ligand 9 (CXCL9) and their targeted delivery in a TAM-avid systemic nanoformulation is reported. With this strategy, it is efficient encapsulation and release of multiple drug loads that can efficiently induce CXCL9 expression in macrophages, both in vitro and in vivo in a mouse tumor model. These observations provide a window into the molecular features that define TAM-specific states, an insight a novel therapeutic anticancer approach is used to discover.


Subject(s)
Neoplasms , Tumor-Associated Macrophages , Animals , Humans , Mice , Chemokine CXCL9/genetics , Chemokine CXCL9/metabolism , Macrophages/metabolism , Neoplasms/pathology , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...