Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Bioprocess Biosyst Eng ; 47(8): 1227-1240, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38653840

ABSTRACT

While monospecific antibodies have long been the foundational offering of protein therapeutics, recent advancements in antibody engineering have allowed for the development of far more complex antibody structures. Novel molecular format (NMF) proteins, such as bispecific antibodies (BsAbs), are structures capable of multispecific binding, allowing for expanded therapeutic functionality. As demand for NMF proteins continues to rise, biomanufacturers face the challenge of increasing bioreactor process productivity while simultaneously maintaining consistent product quality. This challenge is exacerbated when producing structurally complex proteins with asymmetric modalities, as seen in NMFs. In this study, the impact of a high inoculation density (HID) fed-batch process on the productivity and product quality attributes of two CHO cell lines expressing unique NMFs, a monospecific antibody with an Fc-fusion protein and a bispecific antibody, compared to low inoculation density (LID) platform fed-batch processes was evaluated. It was observed that an intensified platform fed-batch process increased product concentrations by 33 and 109% for the two uniquely structured complex proteins in a shorter culture duration while maintaining similar product quality attributes to traditional fed-batch processes.


Subject(s)
Bioreactors , Cricetulus , CHO Cells , Animals , Antibodies, Bispecific/biosynthesis , Batch Cell Culture Techniques , Cricetinae , Recombinant Proteins/biosynthesis
2.
mSphere ; 8(6): e0051123, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37975677

ABSTRACT

IMPORTANCE: Toxoplasma gondii (Tg) is a ubiquitous parasitic pathogen, infecting about one-third of the global population. Tg is controlled in immunocompetent people by mechanisms that are not fully understood. Tg infection drives the production of the inflammatory cytokine interferon gamma (IFNγ), which upregulates intracellular anti-pathogen defense pathways. In this study, we describe host proteins p97/VCP, UBXD1, and ANKRD13A that control Tg at the parasitophorous vacuole (PV) in IFNγ-stimulated endothelial cells. p97/VCP is an ATPase that interacts with a network of cofactors and is active in a wide range of ubiquitin-dependent cellular processes. We demonstrate that PV ubiquitination is a pre-requisite for recruitment of these host defense proteins, and their deposition directs Tg PVs to acidification in endothelial cells. We show that p97/VCP universally targets PVs in human cells and restricts Tg in different human cell types. Overall, these findings reveal new players of intracellular host defense of a vacuolated pathogen.


Subject(s)
Parasites , Toxoplasma , Animals , Humans , Toxoplasma/metabolism , Interferons/metabolism , Vacuoles/metabolism , Endothelial Cells , Interferon-gamma , Valosin Containing Protein/metabolism
3.
Science ; 382(6666): eadg2253, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37797010

ABSTRACT

Disruption of cellular activities by pathogen virulence factors can trigger innate immune responses. Interferon-γ (IFN-γ)-inducible antimicrobial factors, such as the guanylate binding proteins (GBPs), promote cell-intrinsic defense by attacking intracellular pathogens and by inducing programmed cell death. Working in human macrophages, we discovered that GBP1 expression in the absence of IFN-γ killed the cells and induced Golgi fragmentation. IFN-γ exposure improved macrophage survival through the activity of the kinase PIM1. PIM1 phosphorylated GBP1, leading to its sequestration by 14-3-3σ, which thereby prevented GBP1 membrane association. During Toxoplasma gondii infection, the virulence protein TgIST interfered with IFN-γ signaling and depleted PIM1, thereby increasing GBP1 activity. Although infected cells can restrain pathogens in a GBP1-dependent manner, this mechanism can protect uninfected bystander cells. Thus, PIM1 can provide a bait for pathogen virulence factors, guarding the integrity of IFN-γ signaling.


Subject(s)
GTP-Binding Proteins , Host-Pathogen Interactions , Immunity, Innate , Interferon-gamma , Proto-Oncogene Proteins c-pim-1 , Toxoplasma , Toxoplasmosis , Humans , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Interferon-gamma/metabolism , Proto-Oncogene Proteins c-pim-1/metabolism , Toxoplasmosis/immunology , Virulence Factors/metabolism , Macrophages/immunology , 14-3-3 Proteins/metabolism , Host-Pathogen Interactions/immunology
4.
J Biol Chem ; 297(5): 101294, 2021 11.
Article in English | MEDLINE | ID: mdl-34634303

ABSTRACT

Tandem mass spectrometry (MS/MS) is an accurate tool to assess modified ribonucleosides and their dynamics in mammalian cells. However, MS/MS quantification of lowly abundant modifications in non-ribosomal RNAs is unreliable, and the dynamic features of various modifications are poorly understood. Here, we developed a 13C labeling approach, called 13C-dynamods, to quantify the turnover of base modifications in newly transcribed RNA. This turnover-based approach helped to resolve mRNA from ncRNA modifications in purified RNA or free ribonucleoside samples and showed the distinct kinetics of the N6-methyladenosine (m6A) versus 7-methylguanosine (m7G) modification in polyA+-purified RNA. We uncovered that N6,N6-dimethyladenosine (m62A) exhibits distinct turnover in small RNAs and free ribonucleosides when compared to known m62A-modified large rRNAs. Finally, combined measurements of turnover and abundance of these modifications informed on the transcriptional versus posttranscriptional sensitivity of modified ncRNAs and mRNAs, respectively, to stress conditions. Thus, 13C-dynamods enables studies of the origin of modified RNAs at steady-state and subsequent dynamics under nonstationary conditions. These results open new directions to probe the presence and biological regulation of modifications in particular RNAs.


Subject(s)
Adenosine , Carbon Isotopes , Guanosine/analogs & derivatives , RNA Processing, Post-Transcriptional , RNA , Adenosine/chemistry , Adenosine/metabolism , Adenosine/pharmacology , Carbon Isotopes/chemistry , Carbon Isotopes/pharmacology , Guanosine/chemistry , Guanosine/metabolism , Guanosine/pharmacology , Isotope Labeling , RNA/chemistry , RNA/metabolism , Tandem Mass Spectrometry
5.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33883278

ABSTRACT

Cancer cells can survive chemotherapy-induced stress, but how they recover from it is not known. Using a temporal multiomics approach, we delineate the global mechanisms of proteotoxic stress resolution in multiple myeloma cells recovering from proteasome inhibition. Our observations define layered and protracted programs for stress resolution that encompass extensive changes across the transcriptome, proteome, and metabolome. Cellular recovery from proteasome inhibition involved protracted and dynamic changes of glucose and lipid metabolism and suppression of mitochondrial function. We demonstrate that recovering cells are more vulnerable to specific insults than acutely stressed cells and identify the general control nonderepressable 2 (GCN2)-driven cellular response to amino acid scarcity as a key recovery-associated vulnerability. Using a transcriptome analysis pipeline, we further show that GCN2 is also a stress-independent bona fide target in transcriptional signature-defined subsets of solid cancers that share molecular characteristics. Thus, identifying cellular trade-offs tied to the resolution of chemotherapy-induced stress in tumor cells may reveal new therapeutic targets and routes for cancer therapy optimization.


Subject(s)
Neoplasms/drug therapy , Stress, Physiological/drug effects , Antineoplastic Agents/pharmacology , Autophagy/physiology , Cell Line, Tumor , Humans , Metabolome/genetics , Mitochondria/metabolism , Multiple Myeloma/metabolism , Neoplasms/metabolism , Neoplasms/physiopathology , Proteasome Inhibitors/pharmacology , Proteolysis , Proteome/genetics , Systems Analysis , Transcriptome/genetics
6.
Nat Commun ; 12(1): 2043, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33824312

ABSTRACT

The tumour suppressor FBW7 is a substrate adaptor for the E3 ubiquitin ligase complex SKP1-CUL1-F-box (SCF), that targets several oncoproteins for proteasomal degradation. FBW7 is widely mutated and FBW7 protein levels are commonly downregulated in cancer. Here, using an shRNA library screen, we identify the HECT-domain E3 ubiquitin ligase TRIP12 as a negative regulator of FBW7 stability. We find that SCFFBW7-mediated ubiquitylation of FBW7 occurs preferentially on K404 and K412, but is not sufficient for its proteasomal degradation, and in addition requires TRIP12-mediated branched K11-linked ubiquitylation. TRIP12 inactivation causes FBW7 protein accumulation and increased proteasomal degradation of the SCFFBW7 substrate Myeloid Leukemia 1 (MCL1), and sensitizes cancer cells to anti-tubulin chemotherapy. Concomitant FBW7 inactivation rescues the effects of TRIP12 deficiency, confirming FBW7 as an essential mediator of TRIP12 function. This work reveals an unexpected complexity of FBW7 ubiquitylation, and highlights branched ubiquitylation as an important signalling mechanism regulating protein stability.


Subject(s)
Carrier Proteins/metabolism , F-Box-WD Repeat-Containing Protein 7/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Biocatalysis , Drug Resistance, Neoplasm , HCT116 Cells , HEK293 Cells , Humans , Lysine/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Protein Binding , Protein Processing, Post-Translational , Protein Stability , RNA, Small Interfering/metabolism , Substrate Specificity , Ubiquitin-Conjugating Enzymes/metabolism
7.
Cell Rep ; 32(6): 108008, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32783936

ABSTRACT

Interferon-inducible guanylate-binding proteins (GBPs) promote cell-intrinsic defense through host cell death. GBPs target pathogens and pathogen-containing vacuoles and promote membrane disruption for release of microbial molecules that activate inflammasomes. GBP1 mediates pyroptosis or atypical apoptosis of Salmonella Typhimurium (STm)- or Toxoplasma gondii (Tg)- infected human macrophages, respectively. The pathogen-proximal detection-mechanisms of GBP1 remain poorly understood, as humans lack functional immunity-related GTPases (IRGs) that assist murine Gbps. Here, we establish that GBP1 promotes the lysis of Tg-containing vacuoles and parasite plasma membranes, releasing Tg-DNA. In contrast, we show GBP1 targets cytosolic STm and recruits caspase-4 to the bacterial surface for its activation by lipopolysaccharide (LPS), but does not contribute to bacterial vacuole escape. Caspase-1 cleaves and inactivates GBP1, and a cleavage-deficient GBP1D192E mutant increases caspase-4-driven pyroptosis due to the absence of feedback inhibition. Our studies elucidate microbe-specific roles of GBP1 in infection detection and its triggering of the assembly of divergent caspase signaling platforms.


Subject(s)
Caspases/immunology , GTP-Binding Proteins/immunology , Salmonella typhimurium/immunology , Toxoplasma/immunology , Cell Death/immunology , HEK293 Cells , Humans , Inflammasomes/immunology , Interferon-gamma/pharmacology , Ligands , Salmonella Infections/immunology , Salmonella Infections/microbiology , THP-1 Cells , Toxoplasma/genetics , Toxoplasmosis/immunology , Toxoplasmosis/microbiology , Vacuoles/immunology
8.
PLoS Pathog ; 16(6): e1008640, 2020 06.
Article in English | MEDLINE | ID: mdl-32569299

ABSTRACT

Ubiquitylation is a common post translational modification of eukaryotic proteins and in the human malaria parasite, Plasmodium falciparum (Pf) overall ubiquitylation increases in the transition from intracellular schizont to extracellular merozoite stages in the asexual blood stage cycle. Here, we identify specific ubiquitylation sites of protein substrates in three intraerythrocytic parasite stages and extracellular merozoites; a total of 1464 sites in 546 proteins were identified (data available via ProteomeXchange with identifier PXD014998). 469 ubiquitylated proteins were identified in merozoites compared with only 160 in the preceding intracellular schizont stage, suggesting a large increase in protein ubiquitylation associated with merozoite maturation. Following merozoite invasion of erythrocytes, few ubiquitylated proteins were detected in the first intracellular ring stage but as parasites matured through trophozoite to schizont stages the apparent extent of ubiquitylation increased. We identified commonly used ubiquitylation motifs and groups of ubiquitylated proteins in specific areas of cellular function, for example merozoite pellicle proteins involved in erythrocyte invasion, exported proteins, and histones. To investigate the importance of ubiquitylation we screened ubiquitin pathway inhibitors in a parasite growth assay and identified the ubiquitin activating enzyme (UBA1 or E1) inhibitor MLN7243 (TAK-243) to be particularly effective. This small molecule was shown to be a potent inhibitor of recombinant PfUBA1, and a structural homology model of MLN7243 bound to the parasite enzyme highlights avenues for the development of P. falciparum specific inhibitors. We created a genetically modified parasite with a rapamycin-inducible functional deletion of uba1; addition of either MLN7243 or rapamycin to the recombinant parasite line resulted in the same phenotype, with parasite development blocked at the schizont stage. Nuclear division and formation of intracellular structures was interrupted. These results indicate that the intracellular target of MLN7243 is UBA1, and this activity is essential for the final differentiation of schizonts to merozoites.


Subject(s)
Merozoites/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Ubiquitin/metabolism , Ubiquitination , Humans , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Ubiquitin/genetics
9.
Mol Cell ; 79(2): 332-341.e7, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32521225

ABSTRACT

The Ddi1/DDI2 proteins are ubiquitin shuttling factors, implicated in a variety of cellular functions. In addition to ubiquitin-binding and ubiquitin-like domains, they contain a conserved region with similarity to retroviral proteases, but whether and how DDI2 functions as a protease has remained unknown. Here, we show that DDI2 knockout cells are sensitive to proteasome inhibition and accumulate high-molecular weight, ubiquitylated proteins that are poorly degraded by the proteasome. These proteins are targets for the protease activity of purified DDI2. No evidence for DDI2 acting as a de-ubiquitylating enzyme was uncovered, which could suggest that it cleaves the ubiquitylated protein itself. In support of this idea, cleavage of transcription factor NRF1 is known to require DDI2 activity in vivo. We show that DDI2 is indeed capable of cleaving NRF1 in vitro but only when NRF1 protein is highly poly-ubiquitylated. Together, these data suggest that DDI2 is a ubiquitin-directed endoprotease.


Subject(s)
Aspartic Acid Proteases/metabolism , Nuclear Respiratory Factor 1/metabolism , Ubiquitin/metabolism , Aspartic Acid Proteases/genetics , Binding Sites , CRISPR-Cas Systems , Cell Line , Gene Knockout Techniques , HEK293 Cells , Humans , Protein Biosynthesis , Proteolysis
10.
Cell ; 180(6): 1245-1261.e21, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32142654

ABSTRACT

In response to transcription-blocking DNA damage, cells orchestrate a multi-pronged reaction, involving transcription-coupled DNA repair, degradation of RNA polymerase II (RNAPII), and genome-wide transcription shutdown. Here, we provide insight into how these responses are connected by the finding that ubiquitylation of RNAPII itself, at a single lysine (RPB1 K1268), is the focal point for DNA-damage-response coordination. K1268 ubiquitylation affects DNA repair and signals RNAPII degradation, essential for surviving genotoxic insult. RNAPII degradation results in a shutdown of transcriptional initiation, in the absence of which cells display dramatic transcriptome alterations. Additionally, regulation of RNAPII stability is central to transcription recovery-persistent RNAPII depletion underlies the failure of this process in Cockayne syndrome B cells. These data expose regulation of global RNAPII levels as integral to the cellular DNA-damage response and open the intriguing possibility that RNAPII pool size generally affects cell-specific transcription programs in genome instability disorders and even normal cells.


Subject(s)
DNA Damage , RNA Polymerase II/metabolism , DNA Repair , HEK293 Cells , Humans , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription, Genetic , Ubiquitination , Ultraviolet Rays
11.
Life Sci Alliance ; 2(6)2019 12.
Article in English | MEDLINE | ID: mdl-31792063

ABSTRACT

Determining the exact targets and mechanisms of action of drug molecules that modulate circadian rhythms is critical to develop novel compounds to treat clock-related disorders. Here, we have used phenotypic proteomic profiling (PPP) to systematically determine molecular targets of four circadian period-lengthening compounds in human cells. We demonstrate that the compounds cause similar changes in phosphorylation and activity of several proteins and kinases involved in vital pathways, including MAPK, NGF, B-cell receptor, AMP-activated protein kinases (AMPKs), and mTOR signaling. Kinome profiling further indicated inhibition of CKId, ERK1/2, CDK2/7, TNIK, and MST4 kinases as a common mechanism of action for these clock-modulating compounds. Pharmacological or genetic inhibition of several convergent kinases lengthened circadian period, establishing them as novel circadian targets. Finally, thermal stability profiling revealed binding of the compounds to clock regulatory kinases, signaling molecules, and ubiquitination proteins. Thus, phenotypic proteomic profiling defines novel clock effectors that could directly inform precise therapeutic targeting of the circadian system in humans.


Subject(s)
Circadian Clocks/genetics , Circadian Rhythm/drug effects , Drug Evaluation, Preclinical/methods , Adenine/analogs & derivatives , Adenine/pharmacology , Anthracenes/pharmacology , Cell Line, Tumor , Circadian Clocks/drug effects , Circadian Rhythm/genetics , Humans , Phenotype , Phosphorylation , Proteomics , Purines/pharmacology , Roscovitine/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics , Transcription Factors/genetics
12.
Elife ; 82019 07 02.
Article in English | MEDLINE | ID: mdl-31264961

ABSTRACT

Several enzymes can simultaneously interact with multiple intracellular metabolites, however, how the allosteric effects of distinct ligands are integrated to coordinately control enzymatic activity remains poorly understood. We addressed this question using, as a model system, the glycolytic enzyme pyruvate kinase M2 (PKM2). We show that the PKM2 activator fructose 1,6-bisphosphate (FBP) alone promotes tetramerisation and increases PKM2 activity, but addition of the inhibitor L-phenylalanine (Phe) prevents maximal activation of FBP-bound PKM2 tetramers. We developed a method, AlloHubMat, that uses eigenvalue decomposition of mutual information derived from molecular dynamics trajectories to identify residues that mediate FBP-induced allostery. Experimental mutagenesis of these residues identified PKM2 variants in which activation by FBP remains intact but cannot be attenuated by Phe. Our findings reveal residues involved in FBP-induced allostery that enable the integration of allosteric input from Phe and provide a paradigm for the coordinate regulation of enzymatic activity by simultaneous allosteric inputs.


Subject(s)
Allosteric Regulation , Carrier Proteins/metabolism , Gene Expression Regulation, Enzymologic , Membrane Proteins/metabolism , Thyroid Hormones/metabolism , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cell Line , DNA Mutational Analysis , Enzyme Activators/metabolism , Enzyme Inhibitors/metabolism , Fructosediphosphates/metabolism , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Molecular Dynamics Simulation , Phenylalanine/metabolism , Protein Multimerization , Spectrum Analysis , Thyroid Hormones/chemistry , Thyroid Hormones/genetics , Thyroid Hormone-Binding Proteins
13.
Methods ; 159-160: 146-156, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30769100

ABSTRACT

Transcribing RNA polymerase II (RNAPII) is decorated by a plethora of post-translational modifications that mark different stages of transcription. One important modification is RNAPII ubiquitylation, which occurs in response to numerous different stimuli that cause RNAPII stalling, such as DNA damaging agents, RNAPII inhibitors, or depletion of the nucleotide pool. Stalled RNAPII triggers a so-called "last resort pathway", which involves RNAPII poly-ubiquitylation and proteasome-mediated degradation. Different approaches have been described to study RNAPII poly-ubiquitylation and degradation, each method with its own advantages and caveats. Here, we describe optimised strategies for detecting ubiquitylated RNAPII and studying its degradation, but these protocols are suitable for studying other ubiquitylated proteins as well.


Subject(s)
RNA Polymerase II/analysis , RNA Polymerase II/metabolism , Ubiquitination , Animals , DNA Damage , Humans , Mammals/genetics , Mammals/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , RNA Polymerase II/antagonists & inhibitors , RNA Polymerase II/genetics , Transcription, Genetic , Ultraviolet Rays , Yeasts/enzymology , Yeasts/genetics , Yeasts/metabolism
14.
J Exp Med ; 216(2): 450-465, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30642944

ABSTRACT

Lung squamous cell carcinoma (LSCC) and adenocarcinoma (LADC) are the most common lung cancer subtypes. Molecular targeted treatments have improved LADC patient survival but are largely ineffective in LSCC. The tumor suppressor FBW7 is commonly mutated or down-regulated in human LSCC, and oncogenic KRasG12D activation combined with Fbxw7 inactivation in mice (KF model) caused both LSCC and LADC. Lineage-tracing experiments showed that CC10+, but not basal, cells are the cells of origin of LSCC in KF mice. KF LSCC tumors recapitulated human LSCC resistance to cisplatin-based chemotherapy, and we identified LUBAC-mediated NF-κB signaling as a determinant of chemotherapy resistance in human and mouse. Inhibition of NF-κB activation using TAK1 or LUBAC inhibitors resensitized LSCC tumors to cisplatin, suggesting a future avenue for LSCC patient treatment.


Subject(s)
Carcinoma, Squamous Cell/enzymology , Drug Resistance, Neoplasm , Lung Neoplasms/enzymology , Multienzyme Complexes/metabolism , Ubiquitination , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/enzymology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Animals , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cisplatin/pharmacology , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Multienzyme Complexes/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
15.
Dev Cell ; 47(5): 645-659.e6, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30393076

ABSTRACT

Meiotic synapsis and recombination ensure correct homologous segregation and genetic diversity. Asynapsed homologs are transcriptionally inactivated by meiotic silencing, which serves a surveillance function and in males drives meiotic sex chromosome inactivation. Silencing depends on the DNA damage response (DDR) network, but how DDR proteins engage repressive chromatin marks is unknown. We identify the histone H3-lysine-9 methyltransferase SETDB1 as the bridge linking the DDR to silencing in male mice. At the onset of silencing, X chromosome H3K9 trimethylation (H3K9me3) enrichment is downstream of DDR factors. Without Setdb1, the X chromosome accrues DDR proteins but not H3K9me3. Consequently, sex chromosome remodeling and silencing fail, causing germ cell apoptosis. Our data implicate TRIM28 in linking the DDR to SETDB1 and uncover additional factors with putative meiotic XY-silencing functions. Furthermore, we show that SETDB1 imposes timely expression of meiotic and post-meiotic genes. Setdb1 thus unites the DDR network, asynapsis, and meiotic chromosome silencing.


Subject(s)
Chromosome Pairing , DNA Damage , Gene Silencing , Histone Code , Histone-Lysine N-Methyltransferase/metabolism , Animals , Apoptosis , DNA Repair , Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Male , Mice , Mice, Inbred C57BL , Tripartite Motif-Containing Protein 28/genetics , Tripartite Motif-Containing Protein 28/metabolism
16.
BMC Res Notes ; 11(1): 166, 2018 Mar 06.
Article in English | MEDLINE | ID: mdl-29510761

ABSTRACT

OBJECTIVE: The intracellular parasite Toxoplasma gondii can invade any nucleated cell residing inside a parasitophorous vacuole (PV). Upon infection, the cytokine interferon gamma (IFNγ) is produced and elicits host defence mechanisms able to recognise the PV and destroy the parasite. Hereby, Guanylate binding proteins, ubiquitin and the E3 ubiquitin ligases Tripartite Motif Containing 21 (TRIM21) and TNF receptor associated factor 6 are targeted to the murine PV leading to its destruction. This study is the side product of research aiming to identify ubiquitinated substrates in a TRIM21-dependent fashion in murine cells infected with Toxoplasma. RESULTS: We infected IFNγ-stimulated murine embryonic fibroblasts (MEFs) from either C57BL/6×129 wild-type (WT) mice or C57BL/6 TRIM21-/- mice with Toxoplasma. Using mass spectrometry, we analysed proteins in both cell backgrounds presenting with the di-glycine remnant of ubiquitination. In addition, we compared peptide levels between WT and TRIM21-/- cells. In line with earlier reports, Gbp1 was expressed to higher levels in the C57BL/6×129 WT MEFs compared to the C57BL/6-only background TRIM21-/- MEFs. Protein expression differences in these different murine backgrounds thus precluded identification of TRIM21-dependent ubiquitinated substrates. Nevertheless, we identified and confirmed Gbp1 and Gbp2 as being ubiquitinated in a Toxoplasma-infection independent manner.


Subject(s)
GTP-Binding Proteins/metabolism , Toxoplasmosis , Ubiquitination , Animals , Embryo, Mammalian , Fibroblasts , Mice , Mice, Inbred C57BL
17.
Cell Rep ; 21(3): 612-627, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-29045831

ABSTRACT

The tumor suppressor gene adenomatous polyposis coli (APC) is mutated in most colorectal cancers (CRCs), resulting in constitutive Wnt activation. To understand the Wnt-activating mechanism of the APC mutation, we applied CRISPR/Cas9 technology to engineer various APC-truncated isogenic lines. We find that the ß-catenin inhibitory domain (CID) in APC represents the threshold for pathological levels of Wnt activation and tumor transformation. Mechanistically, CID-deleted APC truncation promotes ß-catenin deubiquitination through reverse binding of ß-TrCP and USP7 to the destruction complex. USP7 depletion in APC-mutated CRC inhibits Wnt activation by restoring ß-catenin ubiquitination, drives differentiation, and suppresses xenograft tumor growth. Finally, the Wnt-activating role of USP7 is specific to APC mutations; thus, it can be used as a tumor-specific therapeutic target for most CRCs.


Subject(s)
Adenomatous Polyposis Coli Protein/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Mutation/genetics , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitination , beta Catenin/metabolism , Amino Acid Sequence , Animals , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/pathology , HEK293 Cells , Humans , Mice , Organoids/metabolism , Protein Binding/drug effects , Protein Domains , Small Molecule Libraries/pharmacology , Ubiquitin-Specific Peptidase 7/chemistry , Ubiquitination/drug effects , Wnt Signaling Pathway/drug effects , beta Catenin/chemistry , beta-Transducin Repeat-Containing Proteins/metabolism
18.
Curr Biol ; 27(14): 2123-2136.e7, 2017 Jul 24.
Article in English | MEDLINE | ID: mdl-28712572

ABSTRACT

Autophagy maintains cellular health and homeostasis during stress by delivering cytosolic material captured by autophagosomes to lysosomes for degradation. Autophagosome formation is complex: initiated by the recruitment of autophagy (Atg) proteins to the formation site, it is sustained by activation of Atg proteins to allow growth and closure of the autophagosome. How Atg proteins are translocated to the forming autophagosome is not fully understood. Transport of the ATG8 family member GABARAP from the centrosome occurs during starvation-induced autophagosome biogenesis, but how centrosomal proteins regulate GABARAP localization is unknown. We show that the centriolar satellite protein PCM1 regulates the recruitment of GABARAP to the pericentriolar material. In addition to residing on the pericentriolar material, GABARAP marks a subtype of PCM1-positive centriolar satellites. GABARAP, but not another ATG8 family member LC3B, binds directly to PCM1 through a canonical LIR motif. Loss of PCM1 results in destabilization of GABARAP, but not LC3B, through proteasomal degradation. GABARAP instability is mediated through the centriolar satellite E3 ligase Mib1, which interacts with GABARAP through its substrate-binding region and promotes K48-linked ubiquitination of GABARAP. Ubiquitination of GABARAP occurs in the N terminus, a domain associated with ATG8-family-specific functions during autophagosome formation, on residues absent in the LC3 family. Furthermore, PCM1-GABARAP-positive centriolar satellites colocalize with forming autophagosomes. PCM1 enhances GABARAP/WIPI2/p62-positive autophagosome formation and flux but has no significant effect on LC3B-positive autophagosome formation. These data suggest a mechanism for how centriolar satellites can specifically regulate an ATG8 ortholog, the centrosomal GABARAP reservoir, and centrosome-autophagosome crosstalk.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Autophagy , Centrioles/metabolism , Microtubule-Associated Proteins/metabolism , Ubiquitination , Apoptosis Regulatory Proteins , HEK293 Cells , Humans
19.
Cell Rep ; 18(10): 2480-2493, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28273461

ABSTRACT

Cellular senescence is an important in vivo mechanism that prevents the propagation of damaged cells. However, the precise mechanisms regulating senescence are not well characterized. Here, we find that ITGB3 (integrin beta 3 or ß3) is regulated by the Polycomb protein CBX7. ß3 expression accelerates the onset of senescence in human primary fibroblasts by activating the transforming growth factor ß (TGF-ß) pathway in a cell-autonomous and non-cell-autonomous manner. ß3 levels are dynamically increased during oncogene-induced senescence (OIS) through CBX7 Polycomb regulation, and downregulation of ß3 levels overrides OIS and therapy-induced senescence (TIS), independently of its ligand-binding activity. Moreover, cilengitide, an αvß3 antagonist, has the ability to block the senescence-associated secretory phenotype (SASP) without affecting proliferation. Finally, we show an increase in ß3 levels in a subset of tissues during aging. Altogether, our data show that integrin ß3 subunit is a marker and regulator of senescence.


Subject(s)
Cellular Senescence , Integrin beta3/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Aged, 80 and over , Aging/metabolism , Animals , Cell Line , Cells, Cultured , Cellular Senescence/genetics , Child , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Humans , Integrin beta3/genetics , Isotope Labeling , Mice , Polycomb Repressive Complex 1/metabolism , Protein Subunits/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tumor Suppressor Protein p53/metabolism , Up-Regulation/genetics
20.
Cell Rep ; 15(7): 1597-1610, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27184836

ABSTRACT

In order to facilitate the identification of factors and pathways in the cellular response to UV-induced DNA damage, several descriptive proteomic screens and a functional genomics screen were performed in parallel. Numerous factors could be identified with high confidence when the screen results were superimposed and interpreted together, incorporating biological knowledge. A searchable database, bioLOGIC, which provides access to relevant information about a protein or process of interest, was established to host the results and facilitate data mining. Besides uncovering roles in the DNA damage response for numerous proteins and complexes, including Integrator, Cohesin, PHF3, ASC-1, SCAF4, SCAF8, and SCAF11, we uncovered a role for the poorly studied, melanoma-associated serine/threonine kinase 19 (STK19). Besides effectively uncovering relevant factors, the multiomic approach also provides a systems-wide overview of the diverse cellular processes connected to the transcription-related DNA damage response.


Subject(s)
DNA Damage/radiation effects , Proteomics , Ultraviolet Rays , Chromatin/metabolism , Databases, Factual , HEK293 Cells , Humans , Internet , Leupeptins/pharmacology , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/radiation effects , Nuclear Proteins/metabolism , Phosphorylation/radiation effects , Protein Serine-Threonine Kinases/metabolism , Proteome/drug effects , Proteome/radiation effects , RNA Polymerase II/metabolism , RNA, Small Interfering/metabolism , Transcription, Genetic/radiation effects , Ubiquitination/radiation effects , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...