Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 807(Pt 2): 150785, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34653451

ABSTRACT

Salmon aquaculture is an important economic activity globally where local freshwater supplies permit land-based salmon aquaculture facilities to cultivate early life stage salmon. Nitrogen, phosphorus and organic matter in aquaculture effluents contribute to the eutrophication of adjacent and downstream rivers and lakes. This study quantifies the enrichment of nutrients in land-based salmon aquaculture facility effluents compared to receiving waters. We measured nutrient concentrations and dissolved organic matter (DOM) quantity and quality via fluorescence spectroscopy in streams and effluent waters associated with 27 facilities in Chile. We found that facilities added on average 0.9 (s.d. = 2.0) mg-C L-1, 542 (s.d. = 637) µg-total N L-1, and 104 (s.d. = 104) µg-total P L-1 to effluents compared to stream waters. DOM in stream water was enriched in humic-like fluorescence, while aquaculture effluents were enriched in protein-like DOM fluorophores. Principal component and correlation analysis revealed that tryptophan-like fluorescence was a good predictor of total N and P in effluents, but the strength of significant linear relationships varied among individual facilities (r2: 0.2 to 0.9). Agreement between laboratory fluorescence and a portable fluorometer indicates the utility of in-situ sensors for monitoring of both tryptophan-like fluorescence and covarying nutrients in effluents. Thus, continuous in-situ sensors are likely to improve industry management and allow more robust estimates of aquaculture-derived nutrients delivered to receiving waters.


Subject(s)
Dissolved Organic Matter , Nutrients , Aquaculture , Fluorescence , Lakes
2.
PeerJ ; 7: e6779, 2019.
Article in English | MEDLINE | ID: mdl-31119070

ABSTRACT

The genus Nothofagus is the main component of southern South American temperate forests. The 40 Nothofagus species, evergreen and deciduous, and some natural hybrids are spread among Central and Southern Chile, Argentina, New Zealand, Australia, New Guinea and New Caledonia. Nothofagus nervosa, Nothofagus obliqua and Nothofagus dombeyi are potentially very important timber producers due to their high wood quality and relative fast growth; however, indiscriminate logging has degraded vast areas the Chilean forest causing a serious state of deterioration of their genetic resource. The South of Chile has a large area covered by secondary forests of Nothofagus dombeyi. These forests have a high diversity of species, large amount of biomass and high silvicultural potential. This work shows a case of hybrid identification in Nothofagus subgenus in different secondary forests of Chile, using high resolution melting. Unknown samples of Nothofagus subgenus are genetically distinguishable with the ITS region of Nothofagus antarctica, Nothofagus nitida and N. obliqua species. It was not possible to distinguish between unknown samples of Andean versus coastal origin. Melting curves with ITS approach of unknown material are genetically similar, positioned between N. dombeyi and N. antarctica and distant from N. nitida. The unknown samples are genetically very close to Nothofagus dombeyi. This suggests the presence of hybrid individuality between species (N. dombeyi × N. antarctica) with the possibility of introgression towards the gene pool of N. antarctica, producing the deciduous foliage that is both present. The trnL locus has no distinction between the N. dombeyi and N. antarctica species, since a similar melting curve is present and equal Tm (80.00 °C). The trnL locus cannot be genetically distinguished from one unknown sample of Nothofagus to another, as highlighted in this study.

3.
Forensic Sci Int Genet ; 21: e6-9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26626827

ABSTRACT

Fast, accurate detection of plant species and their hybrids using molecular tools will facilitate assessment and monitoring of timber tracing evidence. In this study the origin of unknown pine samples is determined for a case of timber theft in the region of Araucania southern Chile. We evaluate the utility of the trnL marker region for species identification applied to pine wood based on High Resolution Melting. This efficient tracing methods can be incorporated into forestry applications such as certification of origin. The object of this work was genotype identification using high-resolution melting (HRM) and trnL approaches for Pinus radiata (Don) in timber tracing evidence. Our results indicate that trnL is a very sensitive marker for delimiting species and HRM analysis was used successfully for genotyping Pinus samples for timber tracing purposes. Genotyping samples by HRM analysis with the trnL1 approach allowed us to differentiate two wood samples from the Pinaceae family: Pinus radiata (Don) and Pseudotsuga menziesii (Mirb.) Franco. The same approach with Pinus trnL wood was not able to discriminate between samples of Pinus radiata, indicating that the samples were genetically indistinguishable, possibly because they have the same genotype at this locus. Timber tracing with HRM analysis is expected to contribute to future forest certification schemes, control of illegal trading, and molecular traceability of Pinus spp.


Subject(s)
DNA, Plant/analysis , Forensic Genetics/methods , Nucleic Acid Denaturation/genetics , Pinus/genetics , Chile , DNA, Plant/genetics , Genes, Plant/genetics , Genotype , Pinus/classification , Species Specificity , Wood/classification , Wood/genetics
4.
Sci Total Environ ; 537: 129-38, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26282747

ABSTRACT

Chile is the second largest producer of salmonids worldwide. The first step in the production of salmonids takes place in land-based aquacultures. However, the effects of the discharge from these aquacultures on stream dissolved organic matter (DOM) content, molecular composition and degradability are unknown. The aim of this study was thus to investigate the inputs of anthropogenic DOM from land-based aquaculture to the predominantly pristine river systems of North Patagonia. We hypothesized, that i) DOM exported from land-based aquaculture mainly consists of protein-like fluorescence (tyrosine and tryptophan) released from fish feces and food remains, and that ii) this DOM is highly degradable and therefore rapidly turned-over within the receiving streams. In the North Patagonian region we conducted a screening of ten land-based aquacultures and an intensive sampling campaign for one aquaculture. This was combined with longitudinal transects and a degradation experiment in order to couple the composition of DOM exported from land-based aquacultures to its degradability in streams. We measured dissolved organic carbon (DOC) concentration by high-temperature catalytic oxidation and DOM composition by fluorescence spectroscopy and parallel factor analysis. In the effluent of the ten screened aquacultures and in the repeated sampling of one aquaculture, we consistently found an increase of DOC concentrations and a dominance of protein-like fluorescence. The protein-like fluorescence rapidly disappeared downstream of the aquacultures, and in the degradation experiment. 21% of the DOC export from the repeatedly sampled aquaculture resulted from food addition and 76% from fish production. We conclude that large amounts of degradable DOM are exported from land-based aquacultures. This probably has strong effects on the ecological structure and function of North Patagonian streams, and similarly affected streams worldwide.


Subject(s)
Aquaculture , Environmental Monitoring/methods , Rivers/chemistry , Water Pollutants, Chemical/analysis , Carbon/analysis , Chile
5.
Chemosphere ; 57(8): 763-70, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15488567

ABSTRACT

Residues of five pesticides in surface water were surveyed during 2001 and 2003 in the Traiguen river basin in Southern Chile. Simazine, hexazinone, 2,4-D, picloram herbicides and carbendazim fungicide were selected through a pesticide risk classification index. Six sampling stations along the river were set up based on agricultural and forestry land use. The water sampling was carried out before and after the pesticide application periods and in correspondence to some rain events. Pesticides were analyzed by HPLC with DAD detection in a multiresidue analysis. During 2001, in the first sampling campaign (March), the highest concentrations of pesticides were 3.0 microg l(-1) for simazine and hexazinone and 1.8 microg l(-1) for carbendazim. In the second sampling (September), the highest concentration were 9.7 microg l(-1) for 2,4-D, 0.3 microg l(-1) for picloram and 0.4 microg l(-1) for carbendazim. In the last sampling period (December), samples indicated contamination with carbendazim fungicide at levels of up to 1.2 microg l(-1). In sampling carried out on May 2003, no pesticides were detected. In October 2003, the highest concentrations of pesticides were 4.5 microg l(-1) for carbendazim and 2.9 microg l(-1) for 2,4-D. Data are discussed in function of land use and application periods of the products, showing a clear seasonal pattern pollution in the Traiguen river. Risk assessment for these pesticides was calculated by using a risk quotient (RQ = PNEC/PEC). For picloram the calculated RQ < was 0, which indicates that no adverse effects may occur due to the exposure to this herbicide in the Traiguen river basin. For 2,4-D, simazine, hexazinone, carbendazim RQ > 1, meaning that adverse effects could occur and it is necessary to reduce pesticide exposure in surface waters. It is recommended to continue with a pesticide monitoring program and the implementation of ecotoxicological testing with local and standardized species in order to consider the probability of effects occurrence, with less uncertainty. Thus, it will be more feasible to make some recommendations to regulatory agencies regarding the pesticide use.


Subject(s)
Environmental Monitoring/statistics & numerical data , Fresh Water/analysis , Pesticides/analysis , Water Pollutants, Chemical/analysis , 2,4-Dichlorophenoxyacetic Acid/analysis , Benzimidazoles/analysis , Carbamates/analysis , Chile , Chromatography, High Pressure Liquid , Picloram/analysis , Risk Assessment , Seasons , Simazine/analysis , Triazines/analysis
6.
Anal Bioanal Chem ; 378(4): 1088-94, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14579010

ABSTRACT

First results are described from the application of a recently developed dry method for determination of elements in single specimens of freshwater microcrustaceans, using total reflection X-ray fluorescence spectrometry (TXRF). This method is a powerful, non-destructive technique for quantifying the trace element content of minute biological samples with a dry weight of 3-50 microg. Three different freshwater microcrustaceans were sampled, from the natural, uncontaminated Lake Laja and from the artificial Rapel reservoir which is slightly contaminated by drainage water from a copper mine. Single specimens of Daphnia pulex, Bosmina chilensis, and Ceriodaphnia dubia were prepared using a modification of the dry method and measured by TXRF. The results showed that both As, Mn, Fe, Ni, Zn, and Cu content and the bioaccumulation of these metals were usually significantly different between the microcrustaceans from the two lakes. The largest difference was found for Cu which was eight times more concentrated in the two microcrustaceans from Rapel reservoir than it was in D. pulex from Lake Laja.


Subject(s)
Crustacea/chemistry , Environmental Monitoring/methods , Fresh Water/chemistry , Trace Elements/analysis , Zooplankton/chemistry , Animals , Chile , Metals/analysis , Spectrometry, X-Ray Emission/methods , Trace Elements/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...