Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(23): 25034-25041, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38882075

ABSTRACT

In this study, the functionality of an elastomer composite material containing polypyrrole (PPy) as a stress sensor was evaluated. The material was prepared using the swelling method by diffusing the pyrrole monomer into the elastomer before polymerization. To achieve adequate diffusion, organic solvents with affinity for the elastomer were used. The resulting materials were characterized by scanning electron microscopy (SEM), surface electrical resistance, and thermal and mechanical properties for application as a stress sensor. The simultaneous change in electrical resistance and tension stress was measured using a digital multimeter with electrodes connected to the jaws of a universal mechanical testing machine. The influence of stress cycles on the piezoresistivity of the composite materials was investigated. The obtained PPy/NBR composite presented a good combination of electrical conductivity and mechanical properties. The strain at break remained with mild variation after coating with PPy.

2.
ACS Omega ; 9(8): 9526-9535, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38434895

ABSTRACT

This study addresses the fabrication of extruded films using poly(lactic acid) (PLA) and chitosan, with and without maleic anhydride as a compatibilizing agent, for potential applications in disposable food packaging. These films underwent controlled conditions of UV irradiation, water condensation, and temperature variations in an accelerated weathering chamber. The investigation analyzed the effect of different exposure periods on the structural, morphological, mechanical, and thermal properties of the films. It was observed that PLA films exhibited a lower susceptibility to degradation compared to those containing chitosan. Specifically, the pure PLA film showed an increase in elastic modulus and strength during the initial 144 h of exposure, associated with cross-linking induced by UV radiation. On the other hand, film Q2 composed of PLA, chitosan, and maleic anhydride and Q1 without maleic anhydride experienced a tensile strength loss of over 50% after 244 h of exposure. The Q2 film exhibited greater homogeneity, leading to increased resistance to degradation compared to that of Q1. As the degradation time increased, both the Q1 and Q2 films demonstrated a decline in thermal stability. These films also exhibited alterations in crystallinity attributed to the chemo-crystallization process, along with fluctuations in the glass transition temperature and crystallization, particularly at 288 h.

3.
Materials (Basel) ; 10(2)2017 Jan 25.
Article in English | MEDLINE | ID: mdl-28772464

ABSTRACT

The preparation of composites of synthetic and natural polymers represent an interesting option to combine properties; in this manner, polypropylene and chitosan extruded films using a different proportion of components and polypropylene-graft-maleic anhydride (PPgMA) as compatibilizer were prepared. The effect of the content of the biopolymer in the polypropylene (PP) matrix, the addition of compatibilizer, and the particle size on the properties of the composites was analyzed using characterization by fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), tensile strength, and contact angle, finding that in general, the addition of the compatibilizer and reducing the particle size of the chitosan, favored the physicochemical and morphological properties of the films.

4.
Carbohydr Polym ; 155: 117-127, 2017 Jan 02.
Article in English | MEDLINE | ID: mdl-27702495

ABSTRACT

Chitosan was functionalized with epigallocatechin gallate (EGCG) by a free radical-induced grafting procedure, which was carried out by a redox pair (ascorbic acid/hydrogen peroxide) as the radical initiator. The successful preparation of EGCG grafted-chitosan was verified by spectroscopic (UV, FTIR and XPS) and thermal (DSC and TGA) analyses. The degree of grafting of phenolic compounds onto the chitosan was determined by the Folin-Ciocalteu procedure. Additionally, the biological activities (antioxidant and antibacterial) of pure EGCG, blank chitosan and EGCG grafted-chitosan were evaluated. The spectroscopic and thermal results indicate chitosan functionalization with EGCG; the EGCG content was 25.8mg/g of EGCG grafted-chitosan. The antibacterial activity of the EGCG grafted-chitosan was increased compared to pure EGCG or blank chitosan against S. aureus and Pseudomonas sp. (p<0.05). Additionally, EGCG grafted-chitosan showed higher antioxidant activity than blank chitosan. These results indicate that EGCG grafted-chitosan might be useful in active food packaging.


Subject(s)
Anti-Bacterial Agents/chemistry , Catechin/analogs & derivatives , Chitosan/chemistry , Antioxidants , Catechin/chemistry , Free Radicals , Pseudomonas/drug effects , Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...