Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Environ Res ; 191: 106168, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37708616

ABSTRACT

Earth is inhabited by numerous adaptations of cellular forms shaped by the persistent scrutiny of natural selection. Thus, as natural selection has fixed beneficial adaptations of functional traits, cellular life has conquered almost all environmental niches on our planet. However, cellular life succumbs in number and genetic diversity to viruses. Among all viruses, phages are highly prevalent in diverse environments, and due to their vast genetic diversity and abundance, their relevant role as significant players in several ecological processes is now fully recognized. Pelagiphages, bacteriophages infecting bacteria of the SAR11 clade, are the most abundant viruses in the oceans. However, the ecological contribution of pelagiphages on populations of Pelagibacterales remains largely underestimated. An essential aspect of estimating the impact of bacteriophages is their absolute and precise quantification, which provides relevant information about the host-virus interactions and the structure of viral assemblages. Consequently, due to its abundance and claimed influence in the biogeochemical cycling of elements, the accurate quantification of pelagiphages results in an essential task. This study describes the development and validation of a sensitive, specific, accurate and reproducible qPCR platform targeting pelagiphages. Moreover, this method allowed the detection and quantification of pelagiphages in the Gulf of California for the first time.


Subject(s)
Bacteriophages , Seawater , Real-Time Polymerase Chain Reaction , Seawater/microbiology , Bacteriophages/genetics , Oceans and Seas , Bacteria/genetics
3.
J Fish Dis ; 38(7): 613-20, 2015 Jul.
Article in English | MEDLINE | ID: mdl-24953350

ABSTRACT

The white spot syndrome virus (WSSV) is a lethal and contagious pathogen for penaeid shrimp and a growing number of other crustacean species. To date, there are no effective prophylactic or therapeutic treatments commercially available to interfere with the occurrence and spread of the disease. In addition, the significance of alternative vectors on the dispersal of this disease has been largely ignored and therefore the ecological dynamics of the WSSV is still poorly understood and difficult to ascertain. Thus, an important issue that should be considered in sanitary programmes and management strategies is the identification of species susceptible to infection by WSSV. The results obtained provide the first direct evidence of ongoing WSSV replication in experimentally infected specimens of the tidepool shrimp Palaemon ritteri. Viral replication was detected using a validated set of primers for the amplification by RT-PCR of a 141 bp fragment of the transcript encoding the viral protein VP28. It is therefore conceivable that this shrimp may play a significant role in the dispersal of WSSV.


Subject(s)
Host Specificity/physiology , Palaemonidae/virology , White spot syndrome virus 1/physiology , Animals , Host-Pathogen Interactions , Viral Envelope Proteins/genetics , Viral Proteins/genetics , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...