Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 926: 171810, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38513869

ABSTRACT

Analysis of environmental DNA (eDNA) enables indirect detection of species without the need to directly observe and sample them. For biosecurity and invasion biology, eDNA-based methods are useful to address biological invasions at all phases, from detecting arrivals to confirming eradication of past invasions. We conducted a systematic review of the literature and found that in biosecurity and invasion biology, eDNA has primarily been used to detect new incursions and monitor spread in marine and freshwater ecosystems, with much slower uptake in terrestrial ecosystems, reflecting a broader trend common to the usage of eDNA tools. In terrestrial ecosystems, eDNA research has mostly focussed on the use of eDNA metabarcoding to characterise biodiversity, rather than targeting biosecurity threats or non-native populations. We discuss how eDNA-based methods are being applied to terrestrial ecosystems for biosecurity and managing non-native populations at each phase of the invasion continuum: transport, introduction, establishment, and spread; across different management options: containment, control, and eradication; and for detecting the impact of non-native organisms. Finally, we address some of the current technical issues and caveats of eDNA-based methods, particularly for terrestrial ecosystems, and how these might be solved. As eDNA-based methods improve, they will play an increasingly important role in the early detection and adaptive management of biological invasions, and the implementation of effective biosecurity controls.


Subject(s)
DNA, Environmental , Ecosystem , Biosecurity , Biodiversity , Biology , Environmental Monitoring/methods
2.
Mol Ecol ; 32(23): 6345-6362, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36086900

ABSTRACT

Anthropogenic activities are triggering global changes in the environment, causing entire communities of plants, pollinators and their interactions to restructure, and ultimately leading to species declines. To understand the mechanisms behind community shifts and declines, as well as monitoring and managing impacts, a global effort must be made to characterize plant-pollinator communities in detail, across different habitat types, latitudes, elevations, and levels and types of disturbances. Generating data of this scale will only be feasible with rapid, high-throughput methods. Pollen DNA metabarcoding provides advantages in throughput, efficiency and taxonomic resolution over traditional methods, such as microscopic pollen identification and visual observation of plant-pollinator interactions. This makes it ideal for understanding complex ecological networks and their responses to change. Pollen DNA metabarcoding is currently being applied to assess plant-pollinator interactions, survey ecosystem change and model the spatiotemporal distribution of allergenic pollen. Where samples are available from past collections, pollen DNA metabarcoding has been used to compare contemporary and past ecosystems. New avenues of research are possible with the expansion of pollen DNA metabarcoding to intraspecific identification, analysis of DNA in ancient pollen samples, and increased use of museum and herbarium specimens. Ongoing developments in sequencing technologies can accelerate progress towards these goals. Global ecological change is happening rapidly, and we anticipate that high-throughput methods such as pollen DNA metabarcoding are critical for understanding the evolutionary and ecological processes that support biodiversity, and predicting and responding to the impacts of change.


Subject(s)
DNA Barcoding, Taxonomic , Ecosystem , DNA Barcoding, Taxonomic/methods , Pollen/genetics , Plants/genetics , DNA , Pollination/genetics
3.
Mol Ecol ; 32(23): 6377-6393, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36065738

ABSTRACT

Alpine plant-pollinator communities play an important role in the functioning of alpine ecosystems, which are highly threatened by climate change. However, we still have a poor understanding of how environmental factors and spatiotemporal variability shape these communities. Here, we investigate what drives structure and beta diversity in a plant-pollinator metacommunity from the Australian alpine region using two approaches: pollen DNA metabarcoding (MB) and observations. Individual pollinators often carry pollen from multiple plant species, and therefore we expected MB to reveal a more diverse and complex network structure. We used two gene regions (ITS2 and trnL) to identify plant species present in the pollen loads of 154 insect pollinator specimens from three alpine habitats and construct MB networks, and compared them to networks based on observations alone. We compared species and interaction turnover across space for both types of networks, and evaluated their differences for plant phylogenetic diversity and beta diversity. We found significant structural differences between the two types of networks; notably, MB networks were much less specialized but more diverse than observation networks, with MB detecting many cryptic plant species. Both approaches revealed that alpine pollination networks are very generalized, but we estimated a high spatial turnover of plant species (0.79) and interaction rewiring (0.6) as well as high plant phylogenetic diversity (0.68) driven by habitat differences based on the larger diversity of plant species and species interactions detected with MB. Overall, our findings show that habitat and microclimatic heterogeneity drives diversity and fine-scale spatial turnover of alpine plant-pollinator networks.


Subject(s)
DNA Barcoding, Taxonomic , Ecosystem , Animals , Phylogeny , Australia , Pollen/genetics , Plants/genetics , Pollination/genetics , Flowers , Insecta/genetics
4.
Ecol Evol ; 11(13): 8683-8698, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34257922

ABSTRACT

Accurate identification of the botanical components of honey can be used to establish its geographical provenance, while also providing insights into honeybee (Apis mellifera L.) diet and foraging preferences. DNA metabarcoding has been demonstrated as a robust method to identify plant species from pollen and pollen-based products, including honey. We investigated the use of pollen metabarcoding to identify the floral sources and local foraging preferences of honeybees using 15 honey samples from six bioregions from eastern and western Australia. We used two plant metabarcoding markers, ITS2 and the trnL P6 loop. Both markers combined identified a total of 55 plant families, 67 genera, and 43 species. The trnL P6 loop marker provided significantly higher detection of taxa, detecting an average of 15.6 taxa per sample, compared to 4.6 with ITS2. Most honeys were dominated by Eucalyptus and other Myrtaceae species, with a few honeys dominated by Macadamia (Proteaceae) and Fabaceae. Metabarcoding detected the nominal primary source provided by beekeepers among the top five most abundant taxa for 85% of samples. We found that eastern and western honeys could be clearly differentiated by their floral composition, and clustered into bioregions with the trnL marker. Comparison with previous results obtained from melissopalynology shows that metabarcoding can detect similar numbers of plant families and genera, but provides significantly higher resolution at species level. Our results show that pollen DNA metabarcoding is a powerful and robust method for detecting honey provenance and examining the diet of honeybees. This is particularly relevant for hives foraging on the unique and diverse flora of the Australian continent, with the potential to be used as a novel monitoring tool for honeybee floral resources.

5.
Nat Commun ; 12(1): 1023, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33589628

ABSTRACT

Australia's 2019-2020 'Black Summer' bushfires burnt more than 8 million hectares of vegetation across the south-east of the continent, an event unprecedented in the last 200 years. Here we report the impacts of these fires on vascular plant species and communities. Using a map of the fires generated from remotely sensed hotspot data we show that, across 11 Australian bioregions, 17 major native vegetation groups were severely burnt, and up to 67-83% of globally significant rainforests and eucalypt forests and woodlands. Based on geocoded species occurrence data we estimate that >50% of known populations or ranges of 816 native vascular plant species were burnt during the fires, including more than 100 species with geographic ranges more than 500 km across. Habitat and fire response data show that most affected species are resilient to fire. However, the massive biogeographic, demographic and taxonomic breadth of impacts of the 2019-2020 fires may leave some ecosystems, particularly relictual Gondwanan rainforests, susceptible to regeneration failure and landscape-scale decline.


Subject(s)
Conservation of Natural Resources/methods , Rainforest , Wildfires/statistics & numerical data , Australia , Forests , Humans , Seasons
6.
Environ Entomol ; 50(2): 348-358, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33479744

ABSTRACT

Weather conditions, such as humidity, temperature, and wind speed, affect insect activity. Understanding how different taxa respond to varying environmental conditions is necessary to determine the extent to which environmental change may impact plant-pollinator networks. This is particularly important in alpine regions where taxa may be more susceptible to extreme climatic events and overall increases in temperature. We observed plant-flower visitor interactions in Australian alpine plant communities to determine 1) the structure of the plant-flower visitor community, and 2) how floral visitation and diversity of insect taxa varied according to environmental conditions and habitat type. Coleoptera and Diptera were the most dominant flower visitors in the visitation networks. Most insect orders were moderately generalized in their interactions, but Hymenoptera showed greater specialization (d') at exposed sites compared to other insect orders. Importantly, insect orders behaved differently in response to changes in environmental conditions. Hymenoptera visitation increased with higher temperatures. Diptera was the only taxon observed actively moving between flowers under inclement conditions. Our results demonstrate the value in sampling across the spectrum of environmental conditions to capture the differences among flower visiting insect taxa in their responses to varying environmental conditions. A diversity of responses among insect taxa could facilitate community-level resilience to changing environmental conditions.


Subject(s)
Flowers , Pollination , Animals , Australia , Insecta , Weather
7.
Ecol Evol ; 10(23): 13476-13487, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33304553

ABSTRACT

Restoring degraded landscapes has primarily focused on re-establishing native plant communities. However, little is known with respect to the diversity and distribution of most key revegetation species or the environmental and anthropogenic factors that may affect their demography and genetic structure. In this study, we investigated the genetic structure of two widespread Australian legume species (Acacia salicina and Acacia stenophylla) in the Murray-Darling Basin (MDB), a large agriculturally utilized region in Australia, and assessed the impact of landscape structure on genetic differentiation. We used AFLP genetic data and sampled a total of 28 A. salicina and 30 A. stenophylla sampling locations across southeastern Australia. We specifically evaluated the importance of four landscape features: forest cover, land cover, water stream cover, and elevation. We found that both species had high genetic diversity (mean percentage of polymorphic loci, 55.1% for A. salicina versus. 64.3% for A. stenophylla) and differentiation among local sampling locations (A. salicina: ΦPT = 0.301, 30%; A. stenophylla: ΦPT = 0.235, 23%). Population structure analysis showed that both species had high levels of structure (6 clusters each) and admixture in some sampling locations, particularly A. stenophylla. Although both species have a similar geographic range, the drivers of genetic connectivity for each species were very different. Genetic variation in A. salicina seems to be mainly driven by geographic distance, while for A. stenophylla, land cover appears to be the most important factor. This suggests that for the latter species, gene flow among populations is affected by habitat fragmentation. We conclude that these largely co-occurring species require different management actions to maintain population connectivity. We recommend active management of A. stenophylla in the MDB to improve gene flow in the adversity of increasing disturbances (e.g., droughts) driven by climate change and anthropogenic factors.

8.
J Evol Biol ; 33(9): 1235-1244, 2020 09.
Article in English | MEDLINE | ID: mdl-32557922

ABSTRACT

It is commonly observed that plant species' range margins are enriched for increased selfing rates and, in otherwise self-incompatible species, for self-compatibility (SC). This has often been attributed to a response to selection under mate and/or pollinator limitation. However, range expansion can also cause reduced inbreeding depression, and this could facilitate the evolution of selfing in the absence of mate or pollinator limitation. Here, we explore this idea using spatially explicit individual-based simulations of a range expansion, in which inbreeding depression, variation in self-incompatibility (SI), and mate availability evolve. Under a wide range of conditions, the simulated range expansion brought about the evolution of selfing after the loss of SI in range-marginal populations. Under conditions of high recombination between the self-incompatibility locus (S-locus) and viability loci, SC remained marginal in the expanded metapopulation and could not invade the range core, which remained self-incompatible. In contrast, under low recombination and migration rates, SC was frequently able to displace SI in the range core by maintaining its association with a genomic background with purged genetic load. We conclude that the evolution of inbreeding depression during a range expansion promotes the evolution of SC at range margins, especially under high rates of recombination.‬.


Subject(s)
Biological Evolution , Inbreeding Depression , Models, Genetic , Plant Dispersal , Self-Fertilization , Plant Infertility/genetics
9.
Proc Natl Acad Sci U S A ; 116(31): 15580-15589, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31308227

ABSTRACT

An important new hypothesis in landscape ecology is that extreme, decade-scale megadroughts can be potent drivers of rapid, macroscale ecosystem degradation and collapse. If true, an increase in such events under climate change could have devastating consequences for global biodiversity. However, because few megadroughts have occurred in the modern ecological era, the taxonomic breadth, trophic depth, and geographic pattern of these impacts remain unknown. Here we use ecohistorical techniques to quantify the impact of a record, pancontinental megadrought period (1891 to 1903 CE) on the Australian biota. We show that during this event mortality and severe stress was recorded in >45 bird, mammal, fish, reptile, and plant families in arid, semiarid, dry temperate, and Mediterranean ecosystems over at least 2.8 million km2 (36%) of the Australian continent. Trophic analysis reveals a bottom-up pattern of mortality concentrated in primary producer, herbivore, and omnivore guilds. Spatial and temporal reconstruction of premortality rainfall shows that mass mortality and synchronous ecosystem-wide collapse emerged in multiple geographic hotspots after 2 to 4 y of severe (>40%) and intensifying rainfall deficits. However, the presence of hyperabundant herbivores significantly increased the sensitivity of ecosystems to overgrazing-induced meltdown and permanent ecosystem change. The unprecedented taxonomic breadth and spatial scale of these impacts demonstrate that continental-scale megadroughts pose a major future threat to global biodiversity, especially in ecosystems affected by intensive agricultural use, trophic simplification, and invasive species.


Subject(s)
Droughts/history , Ecosystem , Extinction, Biological , Models, Biological , Animals , Australia , History, 19th Century , History, 20th Century , Humans
10.
Evolution ; 73(5): 913-926, 2019 05.
Article in English | MEDLINE | ID: mdl-30874301

ABSTRACT

Transitions from self-incompatibility to self-compatibility in angiosperms may be frequently driven by selection for reproductive assurance when mates or pollinators are rare, and are often succeeded by loss of inbreeding depression by purging. Here, we use experimental evolution to investigate the spread of self-compatibility from one such population of the perennial plant Linaria cavanillesii into self-incompatible (SI) populations that still have high inbreeding depression. We introduced self-compatible (SC) individuals at different frequencies into replicate experimental populations of L. cavanillesii that varied in access to pollinators. Our experiment revealed a rapid shift to self-compatibility in all replicates, driven by both greater seed set and greater outcross siring success of SC individuals. We discuss our results in the light of computer simulations that confirm the tendency of self-compatibility to spread into SI populations under the observed conditions. Our study illustrates the ease with which self-compatibility can spread among populations, a requisite for species-wide transitions from self-incompatibility to self-compatibility.


Subject(s)
Inbreeding Depression , Linaria/physiology , Pollination , Self-Incompatibility in Flowering Plants , Computer Simulation , Crosses, Genetic , Geography , Linear Models , Phenotype , Reproduction , Seeds/physiology , Spain , Species Specificity
11.
Front Plant Sci ; 6: 761, 2015.
Article in English | MEDLINE | ID: mdl-26442074

ABSTRACT

Properties encompassed by host-pathogen interaction networks have potential to give valuable insight into the evolution of specialization and coevolutionary dynamics in host-pathogen interactions. However, network approaches have been rarely utilized in previous studies of host and pathogen phenotypic variation. Here we applied quantitative analyses to eight networks derived from spatially and temporally segregated host (Linum marginale) and pathogen (Melampsora lini) populations. First, we found that resistance strategies are highly variable within and among networks, corresponding to a spectrum of specialist and generalist resistance types being maintained within all networks. At the individual level, specialization was strongly linked to partial resistance, such that partial resistance was effective against a greater number of pathogens compared to full resistance. Second, we found that all networks were significantly nested. There was little support for the hypothesis that temporal evolutionary dynamics may lead to the development of nestedness in host-pathogen infection networks. Rather, the common patterns observed in terms of nestedness suggests a universal driver (or multiple drivers) that may be independent of spatial and temporal structure. Third, we found that resistance networks were significantly modular in two spatial networks, clearly reflecting spatial and ecological structure within one of the networks. We conclude that (1) overall patterns of specialization in the networks we studied mirror evolutionary trade-offs with the strength of resistance; (2) that specific network architecture can emerge under different evolutionary scenarios; and (3) network approaches offer great utility as a tool for probing the evolutionary and ecological genetics of host-pathogen interactions.

12.
PLoS One ; 10(2): e0117964, 2015.
Article in English | MEDLINE | ID: mdl-25700003

ABSTRACT

Plant-pollinator associations are often seen as purely mutualistic, while in reality they can be more complex. Indeed they may also display a diverse array of antagonistic interactions, such as competition and victim-exploiter interactions. In some cases mutualistic and antagonistic interactions are carried-out by the same species but at different life-stages. As a consequence, population structure affects the balance of inter-specific associations, a topic that is receiving increased attention. In this paper, we developed a model that captures the basic features of the interaction between a flowering plant and an insect with a larval stage that feeds on the plant's vegetative tissues (e.g. leaves) and an adult pollinator stage. Our model is able to display a rich set of dynamics, the most remarkable of which involves victim-exploiter oscillations that allow plants to attain abundances above their carrying capacities and the periodic alternation between states dominated by mutualism or antagonism. Our study indicates that changes in the insect's life cycle can modify the balance between mutualism and antagonism, causing important qualitative changes in the interaction dynamics. These changes in the life cycle could be caused by a variety of external drivers, such as temperature, plant nutrients, pesticides and changes in the diet of adult pollinators.


Subject(s)
Herbivory , Insecta/physiology , Models, Biological , Plants/metabolism , Pollination , Symbiosis/physiology , Animals , Biomass , Insecta/growth & development , Larva/physiology , Plant Leaves/metabolism
13.
Ecol Evol ; 4(6): 673-87, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24683451

ABSTRACT

Genetically controlled self-incompatibility systems represent links between genetic diversity and plant demography with the potential to directly impact on population dynamics. We use an individual-based spatial simulation to investigate the demographic and genetic consequences of different self-incompatibility systems for plants that vary in reproductive capacity and lifespan. The results support the idea that, in the absence of inbreeding effects, populations of self-incompatible species will often be smaller and less viable than self-compatible species, particularly for shorter-lived organisms or where potential fecundity is low. At high ovule production and low mortality, self-incompatible and self-compatible species are demographically similar, thus self-incompatibility does not automatically lead to reduced mate availability or population viability. Overall, sporophytic codominant self-incompatibility was more limiting than gametophytic or sporophytic dominant systems, which generally behaved in a similar fashion. Under a narrow range of conditions, the sporophytic dominant system maintained marginally greater mate availability owing to the production of S locus homozygotes. While self-incompatibility reduces population size and persistence for a broad range of conditions, the actual number of S alleles, beyond that required for reproduction, is important for only a subset of life histories. For these situations, results suggest that addition of new S alleles may result in significant demographic rescue.

14.
J Theor Biol ; 352: 24-30, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24607744

ABSTRACT

Plant-pollinator interactions are among the best known and ubiquitous plant-animal mutualisms and are crucial for ecosystem functioning and the maintenance of biodiversity. Most pollinators are insects with several life-stages (e.g. egg, larva, pupa, adult) and the mutualistic interaction depends on the pollinator surviving these different life-stages. However, to our knowledge, pollinator population structure has been ignored in most theoretical models of plant-pollinator dynamics, and we lack understanding of the role of different life-stages in determining the stability of the mutualism. Here we therefore develop a simple plant-pollinator model with a facultative plant and an obligate pollinator with stage-structure. Our model predicts a globally stable equilibrium when pollinator demography is dominated by adults and a locally stable equilibrium when the plants are strongly dependent on pollination and pollinator demography is dominated by the larval stage. In the latter case, the mutualism is vulnerable to fluctuations in the pollinator population size or structure caused by external factors (e.g. pesticides) reducing larval development and increasing adult mortality. This may cause a sudden collapse rather than gradual decrease of the mutualism, after which the pollination service cannot be recovered by reducing these detrimental external factors, but must be accompanied by large increases in pollinator populations. This highlights the importance of considering population structure in plant-pollinator interactions.


Subject(s)
Plants/parasitology , Pollination , Ecosystem , Models, Theoretical
15.
Ecol Lett ; 15(3): 198-208, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22236277

ABSTRACT

Several network properties have been identified as determinants of the stability and complexity of mutualistic networks. However, it is unclear which mechanisms give rise to these network properties. Phenology seems important, because it shapes the topology of mutualistic networks, but its effects on the dynamics of mutualistic networks have scarcely been studied. Here, we study these effects with a general dynamical model of mutualistic and competitive interactions where the interaction strength depends on the temporal overlap between species resulting from their phenologies. We find a negative complexity-stability relationship, where phenologies maximising mutualistic interactions and minimising intraguild competitive interactions generate speciose, nested and poorly connected networks with moderate asymmetry and low resilience. Moreover, lengthening the season increases diversity and resilience. This highlights the fragility of real mutualistic communities with short seasons (e.g. Arctic environments) to drastic environmental changes.


Subject(s)
Biodiversity , Ecosystem , Models, Biological , Plant Physiological Phenomena , Population Dynamics , Seasons
16.
PLoS One ; 6(12): e27947, 2011.
Article in English | MEDLINE | ID: mdl-22174757

ABSTRACT

In insects and crustaceans, the Down syndrome cell adhesion molecule (Dscam) occurs in many different isoforms. These are produced by mutually exclusive alternative splicing of dozens of tandem duplicated exons coding for parts or whole immunoglobulin (Ig) domains of the Dscam protein. This diversity plays a role in the development of the nervous system and also in the immune system. Structural analysis of the protein suggested candidate epitopes where binding to pathogens could occur. These epitopes are coded by regions of the duplicated exons and are therefore diverse within individuals. Here we apply molecular population genetics and molecular evolution analyses using Daphnia magna and several Drosophila species to investigate the potential role of natural selection in the divergence between orthologs of these duplicated exons among species, as well as between paralogous exons within species. We found no evidence for a role of positive selection in the divergence of these paralogous exons. However, the power of this test was low, and the fact that no signs of gene conversion between paralogous exons were found suggests that paralog diversity may nonetheless be maintained by selection. The analysis of orthologous exons in Drosophila and in Daphnia revealed an excess of non-synonymous polymorphisms in the epitopes putatively involved in pathogen binding. This may be a sign of balancing selection. Indeed, in Dr. melanogaster the same derived non-synonymous alleles segregate in several populations around the world. Yet other hallmarks of balancing selection were not found. Hence, we cannot rule out that the excess of non-synonymous polymorphisms is caused by segregating slightly deleterious alleles, thus potentially indicating reduced selective constraints in the putative pathogen binding epitopes of Dscam.


Subject(s)
Alternative Splicing/genetics , Cell Adhesion Molecules/genetics , Daphnia/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Exons/genetics , Gene Duplication/genetics , Genes, Insect/genetics , Animals , Drosophila melanogaster/chemistry , Epitopes/chemistry , Gene Conversion/genetics , Gene Dosage/genetics , Genetics, Population , Geography , Likelihood Functions , Models, Molecular , Nucleotides/genetics , Polymorphism, Genetic , Selection, Genetic
17.
Physiol Biochem Zool ; 82(5): 561-71, 2009.
Article in English | MEDLINE | ID: mdl-19650727

ABSTRACT

In response to unbalanced energy budgets, animals must allocate resources among competing physiological systems to maximize fitness. Constraints can be imposed on energy availability or energy expenditure, and adjustments can be made via changes in metabolism or trade-offs with competing demands such as body-mass maintenance and immune function. This study investigates changes in constitutive immune function and the acute-phase response in shorebirds (red knots) faced with limited access time to food. We separated birds into two experimental groups receiving either 6 h or 22 h of food access and measured constitutive immune function. After 3 wk, we induced an acute-phase response, and after 1 wk of recovery, we switched the groups to the opposite food treatment and measured constitutive immune function again. We found little effect of food treatment on constitutive immune function, which suggests that even under resource limitation, a baseline level of immune function is maintained. However, birds enduring limited access to food suppressed aspects of the acute-phase response (decreased feeding and mass loss) to maintain energy intake, and they downregulated thermoregulatory adjustments to food treatment to maintain body temperature during simulated infection. Thus, under resource-limited conditions, birds save energy on the most costly aspects of immune defense.


Subject(s)
Charadriiformes/immunology , Charadriiformes/physiology , Acute-Phase Reaction/immunology , Animals , Behavior, Animal , Bird Diseases/etiology , Bird Diseases/immunology , Body Temperature Regulation , Body Weight , Charadriiformes/anatomy & histology , Complement System Proteins/metabolism , Energy Metabolism , Female , Flight, Animal , Food , Haptoglobins/immunology , Immunity, Cellular , Immunity, Innate , Lipopolysaccharides/pharmacology , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...