Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Phys J E Soft Matter ; 44(2): 21, 2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33686547

ABSTRACT

We present a realization of a fast interfacial Marangoni microswimmer by a half-spherical alginate capsule at the air-water interface, which diffusively releases water-soluble spreading molecules (weak surfactants such as polyethylene glycol (PEG)), which act as "fuel" by modulating the air-water interfacial tension. For a number of different fuels, we can observe symmetry breaking and spontaneous propulsion although the alginate particle and emission are isotropic. The propulsion mechanism is similar to soap or camphor boats, which are, however, typically asymmetric in shape or emission to select a swimming direction. We develop a theory of Marangoni boat propulsion starting from low Reynolds numbers by analyzing the coupled problems of surfactant diffusion and advection and fluid flow, which includes surfactant-induced fluid Marangoni flow, and surfactant adsorption at the air-water interface; we also include a possible evaporation of surfactant. The swimming velocity is determined by the balance of drag and Marangoni forces. We show that spontaneous symmetry breaking resulting in propulsion is possible above a critical dimensionless surfactant emission rate (Peclet number). We derive the relation between Peclet number and swimming speed and generalize to higher Reynolds numbers utilizing the concept of the Nusselt number. The theory explains the observed swimming speeds for PEG-alginate capsules, and we unravel the differences to other Marangoni boat systems based on camphor, which are mainly caused by surfactant evaporation from the liquid-air interface. The capsule Marangoni microswimmers also exhibit surfactant-mediated repulsive interactions with walls, which can be qualitatively explained by surfactant accumulation at the wall.


Subject(s)
Alginates/chemistry , Capsules/chemistry , Polyethylene Glycols/chemistry , Surface-Active Agents/chemistry , Adsorption , Air , Biophysical Phenomena , Computer Simulation , Diffusion , Hydrophobic and Hydrophilic Interactions , Models, Chemical , Surface Properties , Surface Tension , Water
2.
Eur Phys J E Soft Matter ; 44(1): 4, 2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33580288

ABSTRACT

We present a theory for the self-propulsion of symmetric, half-spherical Marangoni boats (soap or camphor boats) at low Reynolds numbers. Propulsion is generated by release (diffusive emission or dissolution) of water-soluble surfactant molecules, which modulate the air-water interfacial tension. Propulsion either requires asymmetric release or spontaneous symmetry breaking by coupling to advection for a perfectly symmetrical swimmer. We study the diffusion-advection problem for a sphere in Stokes flow analytically and numerically both for constant concentration and constant flux boundary conditions. We derive novel results for concentration profiles under constant flux boundary conditions and for the Nusselt number (the dimensionless ratio of total emitted flux and diffusive flux). Based on these results, we analyze the Marangoni boat for small Marangoni propulsion (low Peclet number) and show that two swimming regimes exist, a diffusive regime at low velocities and an advection-dominated regime at high swimmer velocities. We describe both the limit of large Marangoni propulsion (high Peclet number) and the effects from evaporation by approximative analytical theories. The swimming velocity is determined by force balance, and we obtain a general expression for the Marangoni forces, which comprises both direct Marangoni forces from the surface tension gradient along the air-water-swimmer contact line and Marangoni flow forces. We unravel whether the Marangoni flow contribution is exerting a forward or backward force during propulsion. Our main result is the relation between Peclet number and swimming velocity. Spontaneous symmetry breaking and, thus, swimming occur for a perfectly symmetrical swimmer above a critical Peclet number, which becomes small for large system sizes. We find a supercritical swimming bifurcation for a symmetric swimmer and an avoided bifurcation in the presence of an asymmetry.

SELECTION OF CITATIONS
SEARCH DETAIL
...