Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Naturwissenschaften ; 95(7): 601-8, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18350268

ABSTRACT

Ants of the genus Camponotus are able to discriminate recognition cues of colony members (nestmates) from recognition cues of workers of a different colony (non-nestmates) from a distance of 1 cm. Free moving, individual Camponotus floridanus workers encountered differently treated dummies on a T-bar and their behavior was recorded. Aggressive behavior was scored as mandibular threat towards dummies. Dummies were treated with hexane extracts of postpharyngeal glands (PPGs) from nestmates or non-nestmates which contain long-chain hydrocarbons in ratios comparable to what is found on the cuticle. The cuticular hydrocarbon profile bears cues which are essential for nestmate recognition. Although workers were prevented from antennating the dummies, they showed significantly less aggressive behavior towards dummies treated with nestmate PPG extracts than towards dummies treated with non-nestmate PPG extracts. In an additional experiment, we show that cis-9-tricosene, an alkene naturally not found in C. floridanus' cuticular profile, is behaviorally active and can interfere with nestmate recognition when presented together with a nestmate PPG extract. Our study demonstrates for the first time that the complex multi-component recognition cues can be perceived and discriminated by ants at close range. We conclude that contact chemosensilla are not crucial for nestmate recognition since tactile interaction is not necessary.


Subject(s)
Ants/physiology , Recognition, Psychology , Social Behavior , Aggression , Animals , Nesting Behavior , Touch
2.
Proc Natl Acad Sci U S A ; 101(9): 2945-50, 2004 Mar 02.
Article in English | MEDLINE | ID: mdl-14993614

ABSTRACT

A hitherto largely unresolved problem in behavioral biology is how workers are prevented from reproducing in large insect societies with high relatedness. Signals of the queen are assumed to inform the nestmates about her presence in the colony, which leads to indirect fitness benefits for workers. In the ant Camponotus floridanus, we found such a signal located on queen-laid eggs. In groups of workers that were regularly provided with queen-laid eggs, larvae, and cocoons, with larvae and cocoons alone, or with no brood, only in the groups with queen-laid eggs did workers not lay eggs. Thus, the eggs seem to inform the nestmates about the queen's presence, which induces workers to refrain from reproducing. The signal on queen-laid eggs is presumably the same that enables workers to distinguish between queen- and worker-laid eggs. Despite their viability, the latter are destroyed by workers when given a choice between both types. Queen- and worker-laid eggs differ in their surface hydrocarbons in a way similar to the way fertile queens differ from workers in the composition of their cuticular hydrocarbons. When we transferred hydrocarbons from the queen cuticle to worker-laid eggs, the destruction of those eggs was significantly mitigated. We conclude that queen-derived hydrocarbon labels inform workers about the presence of a fertile queen and thereby regulate worker reproduction.


Subject(s)
Ants/physiology , Hydrocarbons/analysis , Ovum/physiology , Animals , Female , Ovum/chemistry , Reproduction , Social Behavior , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...