Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Life Sci Alliance ; 6(8)2023 08.
Article in English | MEDLINE | ID: mdl-37193606

ABSTRACT

The genome organizer, special AT-rich binding protein-1 (SATB1), functions to globally regulate gene networks during primary T cell development and plays a pivotal role in lineage specification in CD4+ helper-, CD8+ cytotoxic-, and FOXP3+ regulatory-T cell subsets. However, it remains unclear how Satb1 gene expression is controlled, particularly in effector T cell function. Here, by using a novel reporter mouse strain expressing SATB1-Venus and genome editing, we have identified a cis-regulatory enhancer, essential for maintaining Satb1 expression specifically in TH2 cells. This enhancer is occupied by STAT6 and interacts with Satb1 promoters through chromatin looping in TH2 cells. Reduction of Satb1 expression, by the lack of this enhancer, resulted in elevated IL-5 expression in TH2 cells. In addition, we found that Satb1 is induced in activated group 2 innate lymphoid cells (ILC2s) through this enhancer. Collectively, these results provide novel insights into how Satb1 expression is regulated in TH2 cells and ILC2s during type 2 immune responses.


Subject(s)
Matrix Attachment Region Binding Proteins , Animals , Mice , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism , Immunity, Innate , Lymphocytes , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Differentiation
2.
Nat Cell Biol ; 25(1): 134-144, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36635505

ABSTRACT

In female mammals, one of the two X chromosomes becomes inactivated during development by X-chromosome inactivation (XCI). Although Polycomb repressive complex (PRC) 1 and PRC2 have both been implicated in gene silencing, their exact roles in XCI during in vivo development have remained elusive. To this end, we have studied mouse embryos lacking either PRC1 or PRC2. Here we demonstrate that the loss of either PRC has a substantial impact on maintenance of gene silencing on the inactive X chromosome (Xi) in extra-embryonic tissues, with overlapping yet different genes affected, indicating potentially independent roles of the two complexes. Importantly, a lack of PRC1 does not affect PRC2/H3K27me3 accumulation and a lack of PRC2 does not impact PRC1/H2AK119ub1 accumulation on the Xi. Thus PRC1 and PRC2 contribute independently to the maintenance of XCI in early post-implantation extra-embryonic lineages, revealing that both Polycomb complexes can be directly involved and differently deployed in XCI.


Subject(s)
Polycomb Repressive Complex 1 , X Chromosome Inactivation , Female , Mice , Animals , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , X Chromosome Inactivation/genetics , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Polycomb-Group Proteins/genetics , X Chromosome/genetics , X Chromosome/metabolism , Mammals/metabolism
3.
BMC Biol ; 20(1): 83, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35399062

ABSTRACT

BACKGROUND: Jasmonates (JAs) mediate trade-off between responses to both biotic and abiotic stress and growth in plants. The Arabidopsis thaliana HISTONE DEACETYLASE 6 is part of the CORONATINE INSENSITIVE1 receptor complex, co-repressing the HDA6/COI1-dependent acetic acid-JA pathway that confers plant drought tolerance. The decrease in HDA6 binding to target DNA mirrors histone H4 acetylation (H4Ac) changes during JA-mediated drought response, and mutations in HDA6 also cause depletion in the constitutive repressive marker H3 lysine 27 trimethylation (H3K27me3). However, the genome-wide effect of HDA6 on H4Ac and much of the impact of JAs on histone modifications and chromatin remodelling remain elusive. RESULTS: We performed high-throughput ChIP-Seq on the HDA6 mutant, axe1-5, and wild-type plants with or without methyl jasmonate (MeJA) treatment to assess changes in active H4ac and repressive H3K27me3 histone markers. Transcriptional regulation was investigated in parallel by microarray analysis in the same conditions. MeJA- and HDA6-dependent histone modifications on genes for specialized metabolism; linolenic acid and phenylpropanoid pathways; and abiotic and biotic stress responses were identified. H4ac and H3K27me3 enrichment also differentially affects JAs and HDA6-mediated genome integrity and gene regulatory networks, substantiating the role of HDA6 interacting with specific families of transposable elements in planta and highlighting further specificity of action as well as novel targets of HDA6 in the context of JA signalling for abiotic and biotic stress responses. CONCLUSIONS: The findings demonstrate functional overlap for MeJA and HDA6 in tuning plant developmental plasticity and response to stress at the histone modification level. MeJA and HDA6, nonetheless, maintain distinct activities on histone modifications to modulate genetic variability and to allow adaptation to environmental challenges.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Histone Deacetylase 6 , Acetylation , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Histone Deacetylase 6/genetics , Histone Deacetylase 6/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Histones/genetics , Methylation
4.
Science ; 375(6580): 574-578, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35113719

ABSTRACT

The mammalian blastocyst consists of three distinct cell types: epiblast, trophoblast (TB), and primitive endoderm (PrE). Although embryonic stem cells (ESCs) and trophoblast stem cells (TSCs) retain the functional properties of epiblast and TB, respectively, stem cells that fully recapitulate the developmental potential of PrE have not been established. Here, we report derivation of primitive endoderm stem cells (PrESCs) in mice. PrESCs recapitulate properties of embryonic day 4.5 founder PrE, are efficiently incorporated into PrE upon blastocyst injection, generate functionally competent PrE-derived tissues, and support fetal development of PrE-depleted blastocysts in chimeras. Furthermore, PrESCs can establish interactions with ESCs and TSCs and generate descendants with yolk sac-like structures in utero. Establishment of PrESCs will enable the elucidation of the mechanisms for PrE specification and subsequent pre- and postimplantation development.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/physiology , Endoderm/cytology , Endoderm/embryology , Animals , Blastocyst/cytology , Blastocyst/physiology , Cell Differentiation , Cell Line , Cell Lineage , Chimera , Embryonic Development , Endoderm/growth & development , Fetal Development , Germ Layers/cytology , Germ Layers/embryology , Mice , Mice, Inbred C57BL , Trophoblasts/cytology , Trophoblasts/physiology
5.
Differentiation ; 115: 53-61, 2020.
Article in English | MEDLINE | ID: mdl-32891959

ABSTRACT

Hematopoietic stem cell-containing intra-aortic hematopoietic cell clusters (IAHCs) emerge in the dorsal aorta of the aorta-gonad-mesonephros (AGM) region during midgestation mouse embryos. We previously showed that transduction of Sox17 in CD45lowc-Kithigh cells, which are one component of IAHCs, maintained the cluster formation and the undifferentiated state, but the mechanism of the cluster formation by Sox17 has not been clarified. By microarray gene expression analysis, we found that genes for vascular endothelial-cadherin (VE-cad) and endothelial cell-selective adhesion molecule (ESAM) were expressed at high levels in Sox17-transduced c-Kit+ cells. Here we show the functional role of these adhesion molecules in the formation of IAHCs and the maintenance of the undifferentiated state by in vitro experiments. We detected VE-cad and ESAM expression in endothelial cells of dorsal aorta and IAHCs in E10.5 embryos by whole mount immunohistochemistry. Cells with the middle expression level of VE-cad and the low expression level of ESAM had the highest colony-forming ability. Tamoxifen-dependent nuclear translocation of Sox17-ERT fusion protein induced the formation of cell clusters and the expression of Cdh5 (VE-cad) and ESAM genes. We showed the induction of the Cdh5 (VE-cad) and ESAM expression and the direct interaction of Sox17 with their promoter by luciferase assay and chromatin immunoprecipitation assay, respectively. Moreover, shRNA-mediated knockdown of either Cdh5 (VE-cad) or ESAM gene in Sox17-transduced cells decreased the multilineage-colony forming potential. These findings suggest that VE-cad and ESAM play an important role in the high hematopoietic activity of IAHCs and cluster formation.


Subject(s)
Antigens, CD/genetics , Cadherins/genetics , Cell Adhesion Molecules/genetics , Cell Differentiation/genetics , HMGB Proteins/genetics , Hematopoiesis/genetics , SOXF Transcription Factors/genetics , Animals , Aorta/growth & development , Aorta/metabolism , Cadherins/antagonists & inhibitors , Cell Adhesion Molecules/antagonists & inhibitors , Embryo, Mammalian , Endothelial Cells/cytology , Female , Gene Expression Regulation, Developmental/genetics , HMGB Proteins/antagonists & inhibitors , Hematopoietic Stem Cells/cytology , Humans , Mice , Pregnancy , RNA, Small Interfering/pharmacology , SOXF Transcription Factors/antagonists & inhibitors
6.
Reproduction ; 159(1): 41, 2020 01.
Article in English | MEDLINE | ID: mdl-31689234

ABSTRACT

Oviduct fluid is essential for the fertilization and subsequent preimplantation development. Glycine is abundant in oviduct fluid and is reported to be critical for preimplantation development of fertilized eggs in mammals. However, the mechanism by which glycine exerts its action on fertilized eggs is yet to be understood. Here we show that glycine regulates the preimplantation development of mouse fertilized eggs via glycine receptors. Among them, the alpha-4 subunit (Glra4) and the ß subunit are expressed in mouse fertilized eggs, and lacking Glra4 inhibits embryonic development to the blastocyst stage, decreases the number of cells in the blastocysts and the litter size. Thus, we identify a novel function of the glycine receptor, which is considered to act mainly as a neurotransmitter receptor, as a regulator of embryonic development and our data provide new insights into the interactions between oviduct milieu and mammalian fertilized egg.


Subject(s)
Blastocyst/cytology , Embryonic Development , Receptors, Glycine/physiology , Zygote/cytology , Amino Acid Sequence , Animals , Blastocyst/metabolism , Female , Glycine/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Pregnancy , Transcriptome , Zygote/metabolism
7.
Development ; 145(19)2018 10 11.
Article in English | MEDLINE | ID: mdl-30190278

ABSTRACT

Suppression of Meis genes in the distal limb bud is required for proximal-distal (PD) specification of the forelimb. Polycomb group (PcG) factors play a role in downregulation of retinoic acid (RA)-related signals in the distal forelimb bud, causing Meis repression. It is, however, not known whether downregulation of RA-related signals and PcG-mediated proximal gene repression are functionally linked. Here, we reveal that PcG factors and RA-related signals antagonize each other to polarize Meis2 expression along the PD axis in mouse. Supported by mathematical modeling and simulation, we propose that PcG factors are required to adjust the threshold for RA-related signaling to regulate Meis2 expression. Finally, we show that a variant Polycomb repressive complex 1 (PRC1), incorporating PCGF3 and PCGF5, represses Meis2 expression in the distal limb bud. Taken together, we reveal a previously unknown link between PcG proteins and downregulation of RA-related signals to mediate the phase transition of Meis2 transcriptional status during forelimb patterning.


Subject(s)
Forelimb/embryology , Homeodomain Proteins/metabolism , Limb Buds/metabolism , Polycomb Repressive Complex 1/metabolism , Tretinoin/metabolism , Animals , Forelimb/metabolism , Gene Expression Regulation, Developmental , Genetic Loci , Mice , Signal Transduction
8.
Dev Cell ; 45(3): 303-315.e5, 2018 05 07.
Article in English | MEDLINE | ID: mdl-29738710

ABSTRACT

Precise cell division control is critical for developmental patterning. For the differentiation of a functional stoma, a cellular valve for efficient gas exchange, the single symmetric division of an immediate precursor is absolutely essential. Yet, the mechanism governing this event remains unclear. Here we report comprehensive inventories of gene expression by the Arabidopsis bHLH protein MUTE, a potent inducer of stomatal differentiation. MUTE switches the gene expression program initiated by SPEECHLESS. MUTE directly induces a suite of cell-cycle genes, including CYCD5;1, in which introduced expression triggers the symmetric divisions of arrested precursor cells in mute, and their transcriptional repressors, FAMA and FOUR LIPS. The regulatory network initiated by MUTE represents an incoherent type 1 feed-forward loop. Our mathematical modeling and experimental perturbations support a notion that MUTE orchestrates a transcriptional cascade leading to a tightly restricted pulse of cell-cycle gene expression, thereby ensuring the single cell division to create functional stomata.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation , Cell Lineage , Plant Stomata/cytology , Arabidopsis/metabolism , Cell Cycle , Cell Division , Gene Expression Regulation, Plant , Models, Theoretical , Plant Stomata/metabolism
9.
Genes Dev ; 32(2): 112-126, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29440259

ABSTRACT

Stem cell fate is orchestrated by core transcription factors (TFs) and epigenetic modifications. Although regulatory genes that control cell type specification are identified, the transcriptional circuit and the cross-talk among regulatory factors during cell fate decisions remain poorly understood. To identify the "time-lapse" TF networks during B-lineage commitment, we used multipotent progenitors harboring a tamoxifen-inducible form of Id3, an in vitro system in which virtually all cells became B cells within 6 d by simply withdrawing 4-hydroxytamoxifen (4-OHT). Transcriptome and epigenome analysis at multiple time points revealed that ∼10%-30% of differentially expressed genes were virtually controlled by the core TFs, including E2A, EBF1, and PAX5. Strikingly, we found unexpected transcriptional priming before the onset of the key TF program. Inhibition of the immediate early genes such as Nr4a2, Klf4, and Egr1 severely impaired the generation of B cells. Integration of multiple data sets, including transcriptome, protein interactome, and epigenome profiles, identified three representative transcriptional circuits. Single-cell RNA sequencing (RNA-seq) analysis of lymphoid progenitors in bone marrow strongly supported the three-step TF network model during specification of multipotent progenitors toward B-cell lineage in vivo. Thus, our findings will provide a blueprint for studying the normal and neoplastic development of B lymphocytes.


Subject(s)
B-Lymphocytes/metabolism , Multipotent Stem Cells/metabolism , Transcription, Genetic , Animals , Basic Helix-Loop-Helix Transcription Factors/physiology , Cell Lineage/genetics , Cells, Cultured , Epigenesis, Genetic , Gene Expression Profiling , Gene Regulatory Networks , Histone Code , Kruppel-Like Factor 4 , Mice , Mice, Congenic , Mice, Inbred C57BL , Mice, Knockout , PAX5 Transcription Factor/physiology , Single-Cell Analysis , Trans-Activators/physiology , Transcriptome
10.
J Exp Med ; 215(2): 595-610, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29343500

ABSTRACT

Multipotent hematopoietic progenitors must acquire thymus-homing capacity to initiate T lymphocyte development. Despite its importance, the transcriptional program underlying this process remains elusive. Cbfß forms transcription factor complexes with Runx proteins, and here we show that Cbfß2, encoded by an RNA splice variant of the Cbfb gene, is essential for extrathymic differentiation of T cell progenitors. Furthermore, Cbfß2 endows extrathymic progenitors with thymus-homing capacity by inducing expression of the principal thymus-homing receptor, Ccr9. This occurs via direct binding of Cbfß2 to cell type-specific enhancers, as is observed in Rorγt induction during differentiation of lymphoid tissue inducer cells by activation of an intronic enhancer. As in mice, an alternative splicing event in zebrafish generates a Cbfß2-specific mRNA, important for ccr9 expression. Thus, despite phylogenetically and ontogenetically variable sites of origin of T cell progenitors, their robust thymus-homing capacity is ensured by an evolutionarily conserved mechanism emerging from functional diversification of Runx transcription factor complexes by acquisition of a novel splice variant.


Subject(s)
Core Binding Factor beta Subunit/genetics , Core Binding Factor beta Subunit/immunology , Precursor Cells, T-Lymphoid/cytology , Precursor Cells, T-Lymphoid/immunology , Zebrafish Proteins/genetics , Zebrafish Proteins/immunology , Alternative Splicing , Animals , Cell Differentiation , Cell Lineage , Core Binding Factor alpha Subunits/metabolism , Core Binding Factor beta Subunit/deficiency , Enhancer Elements, Genetic , Evolution, Molecular , Gene Knockdown Techniques , Mice , Mice, Knockout , Mice, Mutant Strains , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , RNA, Messenger/genetics , Receptors, CCR/genetics , Receptors, CCR/immunology , Species Specificity , Thymus Gland/cytology , Thymus Gland/embryology , Thymus Gland/immunology , Zebrafish , Zebrafish Proteins/deficiency
11.
Nat Chem Biol ; 14(3): 299-305, 2018 03.
Article in English | MEDLINE | ID: mdl-29355850

ABSTRACT

The phytohormone auxin indole-3-acetic acid (IAA) regulates nearly all aspects of plant growth and development. Despite substantial progress in our understanding of auxin biology, delineating specific auxin response remains a major challenge. Auxin regulates transcriptional response via its receptors, TIR1 and AFB F-box proteins. Here we report an engineered, orthogonal auxin-TIR1 receptor pair, developed through a bump-and-hole strategy, that triggers auxin signaling without interfering with endogenous auxin or TIR1/AFBs. A synthetic, convex IAA (cvxIAA) hijacked the downstream auxin signaling in vivo both at the transcriptomic level and in specific developmental contexts, only in the presence of a complementary, concave TIR1 (ccvTIR1) receptor. Harnessing the cvxIAA-ccvTIR1 system, we provide conclusive evidence for the role of the TIR1-mediated pathway in auxin-induced seedling acid growth. The cvxIAA-ccvTIR1 system serves as a powerful tool for solving outstanding questions in auxin biology and for precise manipulation of auxin-mediated processes as a controllable switch.


Subject(s)
Arabidopsis Proteins/chemistry , F-Box Proteins/chemistry , Gene Expression Regulation, Plant , Indoleacetic Acids/chemistry , Receptors, Cell Surface/chemistry , Arabidopsis/chemistry , Arabidopsis/genetics , Crosses, Genetic , Kinetics , Mutation , Plant Growth Regulators , Plant Roots , Protein Binding , Protein Engineering , Seedlings , Signal Transduction , Transgenes
12.
Nat Commun ; 8(1): 702, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28951542

ABSTRACT

T-lineage committed precursor thymocytes are screened by a fate-determination process mediated via T cell receptor (TCR) signals for differentiation into distinct lineages. However, it remains unclear whether any antecedent event is required to couple TCR signals with the transcriptional program governing lineage decisions. Here we show that Bcl11b, known as a T-lineage commitment factor, is essential for proper expression of ThPOK and Runx3, central regulators for the CD4-helper/CD8-cytotoxic lineage choice. Loss of Bcl11b results in random expression of these factors and, thereby, lineage scrambling that is disconnected from TCR restriction by MHC. Initial Thpok repression by Bcl11b prior to the pre-selection stage is independent of a known silencer for Thpok, and requires the last zinc-finger motif in Bcl11b protein, which by contrast is dispensable for T-lineage commitment. Collectively, our findings shed new light on the function of Bcl11b in priming lineage-specifying genes to integrate TCR signals into subsequent transcriptional regulatory mechanisms.CD4 and CD8 T cells develop in the thymus with their transcription programs controlled by ThPOK and Runx3, respectively. Here the authors show that a pre-commitment event modulated by the transcription factor, Bcl11b, is required for the proper expression of ThPOK and Runx3 and correct CD4/CD8 lineage commitment.


Subject(s)
Cell Differentiation/genetics , Core Binding Factor Alpha 3 Subunit/genetics , Repressor Proteins/genetics , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Helper-Inducer/cytology , Thymocytes/cytology , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Animals , Cell Lineage , Gene Expression Regulation , Mice , Receptors, Antigen, T-Cell/genetics
13.
Immunity ; 47(2): 268-283.e9, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28778586

ABSTRACT

Foxp3 controls the development and function of regulatory T (Treg) cells, but it remains elusive how Foxp3 functions in vivo. Here, we established mouse models harboring three unique missense Foxp3 mutations that were identified in patients with the autoimmune disease IPEX. The I363V and R397W mutations were loss-of-function mutations, causing multi-organ inflammation by globally compromising Treg cell physiology. By contrast, the A384T mutation induced a distinctive tissue-restricted inflammation by specifically impairing the ability of Treg cells to compete with pathogenic T cells in certain non-lymphoid tissues. Mechanistically, repressed BATF expression contributed to these A384T effects. At the molecular level, the A384T mutation altered Foxp3 interactions with its specific target genes including Batf by broadening its DNA-binding specificity. Our findings identify BATF as a critical regulator of tissue Treg cells and suggest that sequence-specific perturbations of Foxp3-DNA interactions can influence specific facets of Treg cell physiology and the immunopathologies they regulate.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Diabetes Mellitus, Type 1/congenital , Diarrhea/genetics , Forkhead Transcription Factors/metabolism , Genetic Diseases, X-Linked/genetics , Immune System Diseases/congenital , Inflammation/genetics , T-Lymphocytes, Regulatory/physiology , Alleles , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Cell Differentiation , Cell Movement , Cells, Cultured , DNA Mutational Analysis , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Diarrhea/immunology , Forkhead Transcription Factors/genetics , Genetic Diseases, X-Linked/immunology , Humans , Immune System Diseases/genetics , Immune System Diseases/immunology , Inflammation/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mutation, Missense/genetics , Organ Specificity/genetics
14.
Mol Cell Biol ; 37(19)2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28694333

ABSTRACT

Global histone hyperacetylation is suggested to play a critical role for replacement of histones by transition proteins and protamines to compact the genome during spermiogenesis. However, the underlying mechanisms for hyperacetylation-mediated histone replacement remains poorly understood. Here, we report that EPC1 and TIP60, two critical components of the mammalian nucleosome acetyltransferase of H4 (NuA4) complexes, are coexpressed in male germ cells. Strikingly, genetic ablation of either Epc1 or Tip60 disrupts hyperacetylation and impairs histone replacement, in turn causing aberrant spermatid development. Taking these observations together, we reveal an essential role of the NuA4 complexes for histone hyperacetylation and subsequent compaction of the spermatid genome.


Subject(s)
Histone Acetyltransferases/metabolism , Histones/metabolism , Repressor Proteins/metabolism , Spermatids/growth & development , Spermatogenesis , Trans-Activators/metabolism , Acetylation , Animals , Cells, Cultured , Gene Expression Regulation, Developmental , Gene Knockout Techniques , Histone Acetyltransferases/genetics , Lysine Acetyltransferase 5 , Male , Mice , Repressor Proteins/genetics , Spermatids/metabolism , Trans-Activators/genetics
15.
Oncotarget ; 8(28): 45046-45059, 2017 Jul 11.
Article in English | MEDLINE | ID: mdl-28620148

ABSTRACT

BACKGROUND: Despite the use of aggressive therapy, survival rates among high-risk neuroblastoma (NB) patients remain poor. Cancer stem cells (CSCs) are considered to be critically involved in the recurrence and metastasis of NB and are isolated as NB spheres. METHODS: The gene expression profiling of adherent (control) and sphere-forming primary NB cells was conducted using a gene expression microarray. CFC1, which functions in the development of embryos and decides the left-right axis, was strongly expressed in sphere-forming cells only and was related to the unfavorable prognosis of NB patients. The knockdown and overexpression of CFC1 were performed using a lentiviral system in NB cell lines. Sphere formation, cell proliferation, colony formation in soft agar, and xenograft tumor formation were analyzed. RESULTS: The overexpression of CFC1 increased sphere formation, cell growth, and colony formation. These phenotypes, particularly sphere formation, and xenograft tumor formation were significantly suppressed by the knockdown of CFC1. CFC1 inhibited Activin A-induced NB cell differentiation and Smad2 phosphorylation in NB cell lines, indicating its involvement in tumorigenesis related to EGF-CFC co-receptor family molecule pathways. Collectively, these results indicate that CFC1 is a candidate molecule for the development of CSC-targeted therapy for NB.


Subject(s)
Intercellular Signaling Peptides and Proteins/metabolism , Neuroblastoma/metabolism , Animals , Cell Differentiation/physiology , Cell Line, Tumor , Cell Proliferation/physiology , Female , Gene Expression Profiling , Heterografts , Humans , Intercellular Signaling Peptides and Proteins/genetics , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neuroblastoma/genetics , Neuroblastoma/pathology , Prognosis , Transfection
16.
Nat Plants ; 3: 17097, 2017 Jun 26.
Article in English | MEDLINE | ID: mdl-28650429

ABSTRACT

Water deficit caused by global climate changes seriously endangers the survival of organisms and crop productivity, and increases environmental deterioration1,2. Plants' resistance to drought involves global reprogramming of transcription, cellular metabolism, hormone signalling and chromatin modification3-8. However, how these regulatory responses are coordinated via the various pathways, and the underlying mechanisms, are largely unknown. Herein, we report an essential drought-responsive network in which plants trigger a dynamic metabolic flux conversion from glycolysis into acetate synthesis to stimulate the jasmonate (JA) signalling pathway to confer drought tolerance. In Arabidopsis, the ON/OFF switching of this whole network is directly dependent on histone deacetylase HDA6. In addition, exogenous acetic acid promotes de novo JA synthesis and enrichment of histone H4 acetylation, which influences the priming of the JA signalling pathway for plant drought tolerance. This novel acetate function is evolutionarily conserved as a survival strategy against environmental changes in plants. Furthermore, the external application of acetic acid successfully enhanced the drought tolerance in Arabidopsis, rapeseed, maize, rice and wheat plants. Our findings highlight a radically new survival strategy that exploits an epigenetic switch of metabolic flux conversion and hormone signalling by which plants adapt to drought.


Subject(s)
Acetates/metabolism , Arabidopsis/physiology , Droughts , Acclimatization , Aldehyde Oxidoreductases/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Cyclopentanes/metabolism , Epigenesis, Genetic , Glycolysis , Histone Deacetylases/metabolism , Oxylipins/metabolism , Plants, Genetically Modified , Protein Binding , Pyruvate Decarboxylase/metabolism , Signal Transduction
17.
Cell Rep ; 19(6): 1176-1188, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28494867

ABSTRACT

T cell receptor (TCR) signaling by MHC class I and II induces thymocytes to acquire cytotoxic and helper fates via the induction of Runx3 and ThPOK transcription factors, respectively. The mechanisms by which TCR signaling is translated into transcriptional programs for each cell fate remain elusive. Here, we show that, in post-selection thymocytes, a genome organizer, SATB1, activates genes for lineage-specifying factors, including ThPOK, Runx3, CD4, CD8, and Treg factor Foxp3, via regulating enhancers in these genes in a locus-specific manner. Indeed, SATB1-deficient thymocytes are partially re-directed into inappropriate T lineages after both MHC class I- and II-mediated selection, and they fail to generate NKT and Treg subsets. Despite its essential role in activating enhancers for the gene encoding ThPOK in TCR-signaled thymocytes, SATB1 becomes dispensable for maintaining ThPOK in CD4+ T cells. Collectively, our findings demonstrate that SATB1 shapes the primary T cell pool by directing lineage-specific transcriptional programs in the thymus.


Subject(s)
Lymphopoiesis , Matrix Attachment Region Binding Proteins/metabolism , T-Lymphocyte Subsets/cytology , Animals , CD4 Antigens/genetics , CD4 Antigens/metabolism , CD8 Antigens/genetics , CD8 Antigens/metabolism , Cell Lineage , Core Binding Factor Alpha 3 Subunit/genetics , Core Binding Factor Alpha 3 Subunit/metabolism , Enhancer Elements, Genetic , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Matrix Attachment Region Binding Proteins/genetics , Mice , T-Lymphocyte Subsets/metabolism , Thymus Gland/cytology , Thymus Gland/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation
19.
Elife ; 62017 03 17.
Article in English | MEDLINE | ID: mdl-28304275

ABSTRACT

The ring finger protein PCGF6 (polycomb group ring finger 6) interacts with RING1A/B and E2F6 associated factors to form a non-canonical PRC1 (polycomb repressive complex 1) known as PCGF6-PRC1. Here, we demonstrate that PCGF6-PRC1 plays a role in repressing a subset of PRC1 target genes by recruiting RING1B and mediating downstream mono-ubiquitination of histone H2A. PCGF6-PRC1 bound loci are highly enriched for promoters of germ cell-related genes in mouse embryonic stem cells (ESCs). Conditional ablation of Pcgf6 in ESCs leads to robust de-repression of such germ cell-related genes, in turn affecting cell growth and viability. We also find a role for PCGF6 in pre- and peri-implantation mouse embryonic development. We further show that a heterodimer of the transcription factors MAX and MGA recruits PCGF6 to target loci. PCGF6 thus links sequence specific target recognition by the MAX/MGA complex to PRC1-dependent transcriptional silencing of germ cell-specific genes in pluripotent stem cells.


Subject(s)
Cell Differentiation , Embryonic Stem Cells/physiology , Gene Expression Regulation , Polycomb Repressive Complex 1/metabolism , Animals , Gene Silencing , Histones/metabolism , Mice , Ubiquitin-Protein Ligases/metabolism
20.
Nat Immunol ; 18(3): 274-282, 2017 03.
Article in English | MEDLINE | ID: mdl-28135253

ABSTRACT

Although invariant Vα14+ natural killer T cells (NKT cells) are thought to be generated from CD4+CD8+ double-positive (DP) thymocytes, the developmental origin of CD4-CD8- double-negative (DN) NKT cells still remains unresolved. Here we provide definitive genetic evidence obtained, through studies of mice with DP-stage-specific ablation of expression of the gene encoding the recombinase component RAG-2 (Rag2) and by a fate-mapping approach, that supports the proposal of the existence of an alternative developmental pathway through which a fraction of DN NKT cells with strong T-helper-type-1 (TH1)-biased and cytotoxic characteristics develop from late DN-stage thymocytes, bypassing the DP stage. These findings provide new insight into understanding of the development of NKT cells and propose a role for timing of expression of the invariant T cell antigen receptor in determining the functional properties of NKT cells.


Subject(s)
Natural Killer T-Cells/physiology , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Thymocytes/physiology , Animals , CD4 Antigens/metabolism , CD8 Antigens/metabolism , Cell Differentiation , Cell Lineage , Cells, Cultured , Cytokines/metabolism , Cytotoxicity, Immunologic/genetics , DNA-Binding Proteins/genetics , Immunity, Innate , Mice , Mice, Inbred C57BL , Mice, Knockout , Th1 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...