Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 11(48): 45098-45107, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31697056

ABSTRACT

Zn-ion batteries(ZIB) have recently emerged as a promising and rather cheap alternative to Li-ion batteries. However, the divalent charge of Zn limits the choice of cathode materials, whereas the choice of electrolyte is limited by hydrogen-evolution reaction. Polymer cathodes have been shown to be a promising material for ZIB. In this paper, we have studied in detail a Zn/polypyrrole battery in both aqueous and bio-ionic liquid-water mixture electrolytes. From in situ Raman spectroelectrochemistry, it was observed that in aqueous solution, Zn intercalation/deintercalation takes place by a two-step mechanism, whereas a single-step mechanism for Zn storage was involved in bio-ionic liquid-water mixture electrolytes. The charge-discharge measurements showed a higher Zn-storage capacity in the mixture of bio-ionic liquid-water electrolyte compared to the aqueous electrolyte. However, with cycling, a capacity loss was observed. Post analysis of the polymer after cycling showed that a phase transformation has taken place in the polymer with Zn ions trapped in the polymer matrix that decreased the Zn-storage capacity. Furthermore, the Zn anode showed the formation of Zn nanoflakes from aqueous electrolytes that might lead to dendritic growth, whereas dendrite-free Zn nanoparticles were observed on using the bio-ionic liquid-water electrolyte.

2.
Chem Commun (Camb) ; 55(70): 10412-10415, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31403632

ABSTRACT

In this study, Ge0.90Ga0.10 nano-twists were prepared by an in situ Ga-alloying method to inhibit the fractal growth of Ge. The mobility of Li+ in the Ge0.90Ga0.10 nano-twists was two orders higher than that in Ge. This advantage promotes fast charging of Li-ion batteries with the rate capability of 819 mA h g-1 at 16 A g-1.

3.
Front Chem ; 7: 85, 2019.
Article in English | MEDLINE | ID: mdl-30842942

ABSTRACT

Developing functional materials via electroless deposition, without the need of external energy is a fascinating concept. Electroless deposition can be subcategorized into galvanic displacement reaction, disproportionation reaction, and deposition in presence of reducing agents. Galvanic displacement reaction is a spontaneous reduction process wherein the redox potentials of the metal/metal ion in the electrolyte govern the thermodynamic feasibility of the process. In aqueous solutions, the galvanic displacement reaction takes place according to the redox potentials of the standard electrochemical series. In comparison, in the case of ionic liquids, galvanic displacement reaction can be triggered by forming metal ion complexes with the anions of the ionic liquids. Therefore, the redox potentials in ILs can be different to those of metal complexes in aqueous solutions. In this review, we highlight the progress in the electroless deposition of metals and semiconductors nanostructures, from ionic liquids and their application toward lithium/sodium batteries, and in catalysis.

4.
Nanoscale Horiz ; 4(1): 158-168, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-32254151

ABSTRACT

The interfacial nanostructure of the three most widely-studied Deep Eutectic Solvents (DESs), choline chloride:urea (ChCl:Urea), choline chloride:ethylene glycol (ChCl:EG), and choline chloride:glycerol (ChCl:Gly) at a Pt(111) electrode has been studied as a function of applied potential and water content up to 50 wt%. Contact mode atomic force microscope (AFM) force-distance curves reveal that for all three DESs, addition of water increases the interfacial nanostructure up to ∼40 wt%, after which it decreases. This differs starkly from ionic liquids, where addition of small amounts of water rapidly decreases the interfacial nanostructure. For the pure DESs, only one interfacial layer is measured at OCP at 0.5 nm, which increases to 3 to 6 layers extending ∼5 nm from the surface at 40 or 50 wt% water. Application of a potential of ±0.25 V to the Pt electrode for the pure DESs increases the number of near surface layers to 3. However, when water is present the applied potential attenuates the steps in the force curve, which are replaced by a short-range exponential decay. This change was most pronounced for ChCl:EG with 30 wt% or 50 wt% water, so this system was probed using cyclic voltammetry, which confirms the interfacial nanostructure is akin to a salt solution.

5.
Sci Adv ; 4(10): eaau9663, 2018 10.
Article in English | MEDLINE | ID: mdl-30397654

ABSTRACT

Liquid-liquid phase separation is mainly dependent on temperature and composition. Electric fields have also been shown to influence demixing of binary liquid mixtures. However, a puzzling behavior that remains elusive is the electric field-induced phase separation in ion-containing solvents at low voltages, as predicted by Tsori and Leibler. Here, we report the first experimental study of such a phenomenon in ionic liquid-silane mixtures, which not only results in phase separation at the electrode-electrolyte interface (EEI) but also is accompanied by deposition of porous structures of micrometer size on the electrode. This multiscale phenomenon at the EEI was found to be triggered by an electrochemically induced process. Using several analytical methods, we reveal the involved mechanism in which the formation of new Si-N bonds becomes unstable and eventually decomposes into the formation of silane-rich and silane-poor phases. The deposition of porous structures on the electrode surface is therefore a realization of the silane-rich phase. The finding of an electrochemically induced phase separation not only brings a paradigm shift in understanding the EEI in ionic liquids but also provides alternative strategies toward designing porous surfaces.

6.
J Phys Chem Lett ; 9(16): 4673-4678, 2018 Aug 16.
Article in English | MEDLINE | ID: mdl-30067038

ABSTRACT

Investigations of the solid-electrolyte interphase formation on a silicon anode are of great interest for future lithium-ion batteries. We have studied the interactions of the ionic liquid 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide ([OMIm]Tf2N) and of lithium with Si(111) surfaces on a molecular level by X-ray photoelectron spectroscopy. The interaction of Li with [OMIm]Tf2N on Si(111) results in the decomposition of both the cation and the anion and the intercalation of lithium. Lithium atoms donate the electrons to the [OMIm]+ cation, forming Li+, and at the same time the alkyl group is detached from the cation. Excessive Li could decompose the imidazolium ring, resulting in C xH y and LiC xH yN z species and interact with the Tf2N- anions, forming LiF, Li xO, F3C-O2S-N-Li+, and F3C-O2S-Li+ species. The formation of a stable Si/IL interface and of Si/Li surface alloys was proved to be an effective strategy in stabilizing Li for next-generation Li-ion batteries.

7.
Top Curr Chem (Cham) ; 376(2): 9, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29468471

ABSTRACT

Electrode materials as well as the electrolytes play a decisive role in batteries determining their performance, safety, and lifetime. In the last two decades, different types of batteries have evolved. A lot of work has been done on lithium ion batteries due to their technical importance in consumer electronics, however, the development of post-lithium systems has become a focus in recent years. This chapter gives an overview of various battery materials, primarily focusing on development of electrode materials in ionic liquids via electrochemical route and using ionic liquids as battery electrolyte components.


Subject(s)
Electric Power Supplies , Electrochemical Techniques , Ionic Liquids/chemistry , Electrodes , Electrolytes/chemistry
8.
J Phys Chem Lett ; 9(6): 1272-1278, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29457728

ABSTRACT

In electrochemistry, the electrode/electrolyte interface (EEI) governs the charge/mass-transfer processes and controls the nucleation/growth phenomena. The EEI in ionic liquids (ILs) can be controlled by changing the cation/anion of the IL, salt concentration, electrode potential, and temperature. Here, we show that adding a dopant salt leads to the deposition of nanowires. To illustrate, zinc nanowires were electrodeposited from ZnCl2/1-butyl-1-methylpyrrolidinium trifluoromethylsulfonate in the presence of GaCl3 as a dopant salt. The choice of Zn salt and its ratio to GaCl3 were found to be crucial for Zn nanowires formation. AFM studies revealed that the solvation structure of Au(111)/IL changes significantly in the presence of GaCl3 and ZnCl2. Chronoamperometry showed changes in the nucleation/growth process, consequently leading to the formation of nanowires. A similar approach was adopted to synthesize Sn nanowires. Thus, modification of the EEI by adding a dopant to ILs can be a viable method to obtain nanowires.

9.
Phys Chem Chem Phys ; 20(7): 4760-4771, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29379921

ABSTRACT

Ionic liquids (ILs) form a multilayered structure at the solid/electrolyte interface, and the addition of solutes can alter it. For this purpose, we have investigated the influence of the silver bis(trifluoromethylsulfonyl)amide (AgTFSA) concentration in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([Py1,4]TFSA) on the layering using in situ atomic force microscopy. AFM investigations revealed that the Au(111)/electrolyte interface indeed depends on the concentration of the salt where a typical " IL" multilayered structure is retained only at quite low concentrations of the silver salt (e.g. ≤200 µM). However, at 200 µM AgTFSA/[Py1,4]TFSA and above this "IL" multilayered structure is disturbed/varied. A simple double layer structure was observed at 500 µM AgTFSA in [Py1,4]TFSA. Furthermore, the widths of the innermost layers have been found to be dependent on the concentration and on the applied electrode potentials. Our AFM results show that the concentration of solutes strongly influences the structure of the electrode/electrolyte interface and can provide new insights into the electrical double layer structure of the electrode/ionic liquid interface. We also introduce a semi-continuum theory to discuss the double layer structure.

10.
Faraday Discuss ; 206: 459-473, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28936497

ABSTRACT

Ionic liquids have attracted significant interest as electrolytes for the electrodeposition of metals and semiconductors, but the details of the deposition processes are not yet well understood. In this paper, we give an overview of how the addition of various precursors (TaF5, SiCl4, and GaCl3) affects the solid/IL interfacial structure. In situ Atomic Force Microscopy (AFM) and vibrational spectroscopy have been employed to study the changes of the Au(111)/IL interface and in the electrolytes, respectively. Ionic liquids with the 1-butyl-1-methylpyrrolidinium ([Py1,4]+) cation and bis(trifluoromethylsulfonyl)amide ([TFSA]-), trifluoromethylsulfonate ([TfO]-) and tris(pentafluoroethyl)trifluorophosphate ([FAP]-) as anions were chosen for this purpose. In situ AFM force-distance measurements reveal that both the anion of the IL and the solutes (TaF5 or GaCl3) influence the Electrical Double Layer (EDL) structure of the Au(111)/IL interface, which can affect the deposition process of Ta and the morphology of the Ga electrodeposits, respectively. Furthermore, the concentration of the precursor can significantly alter the Au(111)/[Py1,4][FAP]-SiCl4 interfacial structure wherein the presence of 0.25 M SiCl4 a double layer structure forms that facilitates Si deposition. This study may provide some critical insights into the structure of the electrode/IL interface for specific applications.

11.
Faraday Discuss ; 206: 339-351, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28936506

ABSTRACT

Electroless deposition can be triggered by the difference in the redox potentials between two metals in an electrolyte. In aqueous electrochemistry, galvanic displacement takes place according to the electrochemical series wherein a more noble metal can displace a less noble metal. Herein we show anomalous behaviour in ionic liquids wherein less noble metals such as Fe and Sb were deposited on Cu at temperatures from 25 to 60 °C. Fe formed spherical structures whereas Cu2Sb/Sb formed nanoplates. A multistep process during the electroless deposition of Sb on Cu took place which was discerned from in situ XPS, and mass spectrometry. In situ AFM was also used to understand the nucleation and growth process of the galvanic displacement reaction. Subsequently, the Cu2Sb/Sb nanoplates were also tested as the anode for both Li-ion and Na-ion batteries. Thus, it is shown that the electrochemistry in ionic liquids significantly differs from aqueous electrolytes and opens up new routes for material synthesis.

12.
Phys Chem Chem Phys ; 19(38): 25989-25995, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28920607

ABSTRACT

In this work, we report on the influence of an organic ligand on the electrodeposition of Zn from an ionic liquid (IL) electrolyte. Zinc oxide was first dissolved in a protic IL. By introducing a 2-methylimidazole (2-MIm) ligand, the electronic environment of zinc ions, Zn(ii) complexes and the structure of the IL are considerably altered, as verified by both X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Due to the electron donation effect of the ligand, the zinc ions become less positively charged and exhibit a lower binding energy by -0.5 eV, compared to its absence. The atomic force microscopy (AFM) results show that a higher push-through force is required to rupture the interfacial layers in the presence of the ligand compared to its absence. The ligand can interact with both the cation and the anion of the IL via hydrogen bonds, forming compact layers on the surface, which also has a strong influence on the electrochemical performance. The cyclic voltammograms show reduction peaks at -1.4 V in all cases, but the current density decreases as the concentration of 2-MIm increases. Dendritic zinc deposits were obtained in 1.5 mol L-1 ZnO/[EIm]TfO, while dendrite-free zinc structures were obtained in the presence of 1.5 mol L-1 2-MIm.

13.
Chem Asian J ; 12(20): 2684-2693, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-28776952

ABSTRACT

Electrostatic interactions are characteristic of ionic liquids (ILs) and play a pivotal role in determining the formation of species when solutes are dissolved in them. The formation of new species/complexes has been investigated for certain ILs. However, such investigations have not yet focused on eutectic liquids, which are a promising class of ILs. These liquids (or liquid coordination complexes, LCCs) are rather new and are composed of cationic and anionic chloro complexes of metals. To date, these liquids have been employed as electrolytes to deposit metals and as solvents for catalysis. The present study deals with a liquid that is prepared by mixing a 1.2:1 mol ratio of AlCl3 and 1-butylpyrrolidine. An attempt has been made to understand the interactions of FeCl2 with the organic molecule using spectroscopy. It was found that dissolved Fe(II) species interact mainly with the IL anion and such interactions can lead to changes in the cation of the electrolyte. Furthermore, the viability of depositing thick magnetic films of Fe and Fe-Al has been explored.

14.
Nanoscale ; 9(24): 8481-8488, 2017 Jun 22.
Article in English | MEDLINE | ID: mdl-28604881

ABSTRACT

With the growing demand for portable and wearable electronic devices, it is imperative to develop high performance Li-ion batteries with long life times. Germanium-based materials have recently demonstrated excellent lithium-ion storage ability and are being considered as the most promising candidates for the anodes of lithium-ion batteries. Nevertheless, the practical implementation of Ge-based materials to Li-ion batteries is greatly hampered by the poor cycling ability that resulted from the huge volume variation during lithiation/delithiation processes. Herein, we develop a simple and efficient method for the preparation of Ge nanowires without catalyst nanoparticles and templates, using ionic liquid electrodeposition with subsequent annealing treatment. The Ge nanowire anode shows improved electrochemical performance compared with the Ge dense film anode. A capacity of ∼1200 mA h g-1 after 200 cycles at 0.1 C is obtained, with an initial coulombic efficiency of 81.3%. In addition, the Ge nanowire anode demonstrates superior rate capability with excellent capacity retention and stability (producing highly stable discharge capacities of about 620 mA h g-1 at 5 C). The improved electrochemical performance is the result of the enhanced electron migration and electron transport paths of the nanowires, and sufficient elasticity to buffer the volume expansion. This approach encompasses a low energy processing method where all the material is electrochemically active and binder free. The improved cycling stability and rate performance characteristics make these anodes highly attractive for the most demanding lithium-ion applications.

15.
Langmuir ; 33(38): 9539-9547, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28248522

ABSTRACT

In this work, the interfacial nanostructure and electrowetting of ionic liquids having the same 1-ethyl-3-methylimidazolium cation ([EMIm]+) but different anions such as bis(trifluoromethylsulfonyl)imide (TFSI-), trifluoromethylsulfonate (TfO-), methylsulfonate (OMs-), acetate (OAc-), bis(fluorosulfonyl)imide (FSI-), dicyanamide (DCA-), and tris(pentafluorethyl)trifluorphosphat (FAP-) on bare metallic electrodes were investigated. In the investigated voltammetric potential regime, the contact angle versus voltage curve is asymmetric with respect to surface polarity. The electrowetting of the ILs occurs at negative potentials but does not occur at positive potentials. In situ atomic force microscopy (AFM) shows that the IL adopts a multilayered structure at the solid/IL interface, and a cation-rich layer is present in the innermost layer during cathodic polarization. The cations can change their orientation and propagate ahead of the three-phase contact line by diffusion, leading to further spreading on the negatively charged surface. The formation of such a surface layer is also evidenced by X-ray photoelectron spectroscopy. Such a surface diffusion mechanism does not occur during anodic polarization, where anions are enriched. In addition, the influence of substrate, water, and dissolved zinc salts on the electrowetting of ILs was studied. Our findings provide valuable insights for the interfacial nanostructure and the electrowetting of ILs.

16.
ACS Appl Mater Interfaces ; 9(13): 11350-11355, 2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28332814

ABSTRACT

Metal nanoparticles such as Au, Ag, Pt, and so forth have been deposited on silicon by electroless deposition in the presence of hydrofluoric acid (HF) for applications such as oxygen reduction reaction, surface-enhanced Raman spectroscopy, as well as for lithium ion batteries. Here, we show an HF-free process wherein metals such as Sb and Ag could be deposited onto electrodeposited silicon in ionic liquids. We further show that, compared to electrodeposited silicon, Sb-modified Si demonstrates a better performance for lithium storage. The present study opens a new paradigm for the electroless deposition technique in ionic liquids for developing and modifying functional materials.

17.
Dalton Trans ; 46(2): 455-464, 2017 Jan 03.
Article in English | MEDLINE | ID: mdl-27957582

ABSTRACT

The mixtures of 1-butylpyrrolidine and ZnCl2 result in the formation of an ionic liquid, which can be used as an electrolyte for zinc electrodeposition. The feasibility of electrodepositing Zn from these electrolytes was investigated at RT and at 60 °C. The synthesized mixtures are rather viscous. Toluene was added to the mixtures to decrease the viscosity of the ILs. Vibrational spectroscopy was employed for the characterization of the liquids. The electrochemical behaviour of the liquids was evaluated by cyclic voltammetry. The electrode/electrolyte interface of this IL was probed by Atomic Force Microscopy (AFM). The suitable range for the electrodeposition of Zn was found to be ≥28.6 mol% of ZnCl2. Zn deposition occurs mainly from the cationic species of [ZnClxLy]+ (where x = 1, y = 1-2, and L = 1-butylpyrrolidine) in these electrolytes. This is in contrary to the well investigated chlorozincate ionic liquids where the deposition of Zn occurs mainly from anionic chlorozincates. Nanoplates of Zn were obtained from these mixtures of 1-butylpyrrolidine and ZnCl2.

18.
Phys Chem Chem Phys ; 19(1): 54-58, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-27929167

ABSTRACT

Ionic liquids are potential electrolytes for safe lithium-ion batteries (LIB). Recent research has probed the use of silicon as an anode material for LIB with various electrolytes. However, the nanostructure of the ionic liquid/Si interface is unknown. The present communication probes the hydrogen terminated p-Si(111) interface using atomic force microscopy (AFM) in 1-ethyl-3-methylimidazolium bis(trifluoromethlysulfonyl)amide ([EMIm]TFSA) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethlysulfonyl)amide ([Py1,4]TFSA). AFM measurements reveal that the imidazolium cation adsorbs at the H-Si(111)/[EMIm]TFSA interface leading to an ordered clustered facet structure of ∼3.8 nm in size. In comparison, the Si(111)/[Py1,4]TFSA interface appeared the same as the native surface in argon. For both pure ILs, repulsive forces were measured as the tip approached the surface. On addition of LiTFSA attractive forces were measured, revealing marked changes in the interfacial structure.

19.
ACS Appl Mater Interfaces ; 8(49): 34143-34150, 2016 Dec 14.
Article in English | MEDLINE | ID: mdl-27960439

ABSTRACT

Ionic liquid-organic solvent mixtures have recently been investigated as potential battery electrolytes. However, contradictory results with these mixtures have been shown for battery performance. In this manuscript, we studied the influence of the addition of polar organic solvents into the ionic liquid electrolyte 1 M lithium bis(fluorosulfonyl)amide (LiFSI)-1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)amide ([Py1,4]FSI) and tested it for lithium ion battery applications. From infrared and Raman spectroscopy, clear changes in the lithium solvation and cation-anion interactions in the ionic liquid were observed on addition of organic solvents. From the lithiation/delithiation studies on electrodeposited Ge, the storage capacity for the ionic liquid-highly polar organic solvent (acetonitrile) mixture was found to be the highest at low C-rates (0.425 C) compared to using an ionic liquid alone and ionic liquid-less polar solvent (dimethyl carbonate) mixtures. Furthermore, XPS and AFM were used to evaluate the solid electrolyte interphase (SEI) and to correlate its stability with Li storage capacity.

20.
J Nanosci Nanotechnol ; 16(1): 777-82, 2016 Jan.
Article in English | MEDLINE | ID: mdl-27398522

ABSTRACT

Three dimensionally ordered macroporous (3DOM) Ge films have been made via ordered polystyrene (PS) templates by electrodeposition from ionic liquids 1-Butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide and 1-Ethyl-3-methylimidazolium tris (pentafluoroethyl) trifluorophosphate at room temperature. We discuss the possibility of obtaining high quality 3DOM Ge films from two different ionic liquids by the simple and inexpensive template-assisted electrochemical pathway. Scanning electron microscopy confirms the quality of the samples, and the optical measurements demonstrate that 3DOM Ge made electrochemically shows photonic crystal behavior. Such a material has the potential to make 3DOM Ge feasible for electrical, optical applications and for photonic crystal solar cells.


Subject(s)
Germanium/chemistry , Ionic Liquids/chemistry , Polystyrenes/chemistry , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...