Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Magn Reson ; 54(11-12): 1571-1588, 2023.
Article in English | MEDLINE | ID: mdl-38037641

ABSTRACT

Multidimensional Magnetic Resonance Imaging (MRI) is a versatile tool for microstructure mapping. We use a diffusion weighted inversion recovery spin echo (DW-IR-SE) sequence with spiral readouts at ultra-strong gradients to acquire a rich diffusion-relaxation data set with sensitivity to myelin water. We reconstruct 1D and 2D spectra with a two-step convex optimization approach and investigate a variety of multidimensional MRI methods, including 1D multi-component relaxometry, 1D multi-component diffusometry, 2D relaxation correlation imaging, and 2D diffusion-relaxation correlation spectroscopic imaging (DR-CSI), in terms of their potential to quantify tissue microstructure, including the myelin water fraction (MWF). We observe a distinct spectral peak that we attribute to myelin water in multi-component T1 relaxometry, T1-T2 correlation, T1-D correlation, and T2-D correlation imaging. Due to lower achievable echo times compared to diffusometry, MWF maps from relaxometry have higher quality. Whilst 1D multi-component T1 data allows much faster myelin mapping, 2D approaches could offer unique insights into tissue microstructure and especially myelin diffusion.

2.
Med Image Anal ; 77: 102387, 2022 04.
Article in English | MEDLINE | ID: mdl-35180675

ABSTRACT

Voluntary and involuntary patient motion is a major problem for data quality in clinical routine of Magnetic Resonance Imaging (MRI). It has been thoroughly investigated and, yet it still remains unresolved. In quantitative MRI, motion artifacts impair the entire temporal evolution of the magnetization and cause errors in parameter estimation. Here, we present a novel strategy based on residual learning for retrospective motion correction in fast 3D whole-brain multiparametric MRI. We propose a 3D multiscale convolutional neural network (CNN) that learns the non-linear relationship between the motion-affected quantitative parameter maps and the residual error to their motion-free reference. For supervised model training, despite limited data availability, we propose a physics-informed simulation to generate self-contained paired datasets from a priori motion-free data. We evaluate motion-correction performance of the proposed method for the example of 3D Quantitative Transient-state Imaging at 1.5T and 3T. We show the robustness of the motion correction for various motion regimes and demonstrate the generalization capabilities of the residual CNN in terms of real-motion in vivo data of healthy volunteers and clinical patient cases, including pediatric and adult patients with large brain lesions. Our study demonstrates that the proposed motion correction outperforms current state of the art, reliably providing a high, clinically relevant image quality for mild to pronounced patient movements. This has important implications in clinical setups where large amounts of motion affected data must be discarded as they are rendered diagnostically unusable.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Adult , Artifacts , Child , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Motion , Retrospective Studies
3.
Neuroradiology ; 63(11): 1831-1851, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33835238

ABSTRACT

PURPOSE: Advanced MRI-based biomarkers offer comprehensive and quantitative information for the evaluation and characterization of brain tumors. In this study, we report initial clinical experience in routine glioma imaging with a novel, fully 3D multiparametric quantitative transient-state imaging (QTI) method for tissue characterization based on T1 and T2 values. METHODS: To demonstrate the viability of the proposed 3D QTI technique, nine glioma patients (grade II-IV), with a variety of disease states and treatment histories, were included in this study. First, we investigated the feasibility of 3D QTI (6:25 min scan time) for its use in clinical routine imaging, focusing on image reconstruction, parameter estimation, and contrast-weighted image synthesis. Second, for an initial assessment of 3D QTI-based quantitative MR biomarkers, we performed a ROI-based analysis to characterize T1 and T2 components in tumor and peritumoral tissue. RESULTS: The 3D acquisition combined with a compressed sensing reconstruction and neural network-based parameter inference produced parametric maps with high isotropic resolution (1.125 × 1.125 × 1.125 mm3 voxel size) and whole-brain coverage (22.5 × 22.5 × 22.5 cm3 FOV), enabling the synthesis of clinically relevant T1-weighted, T2-weighted, and FLAIR contrasts without any extra scan time. Our study revealed increased T1 and T2 values in tumor and peritumoral regions compared to contralateral white matter, good agreement with healthy volunteer data, and high inter-subject consistency. CONCLUSION: 3D QTI demonstrated comprehensive tissue assessment of tumor substructures captured in T1 and T2 parameters. Aiming for fast acquisition of quantitative MR biomarkers, 3D QTI has potential to improve disease characterization in brain tumor patients under tight clinical time-constraints.


Subject(s)
Glioma , Protons , Brain , Feasibility Studies , Glioma/diagnostic imaging , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging
4.
Z Med Phys ; 30(1): 4-16, 2020 Feb.
Article in English | MEDLINE | ID: mdl-30853147

ABSTRACT

Diffusion anisotropy in diffusion tensor imaging (DTI) is commonly quantified with normalized diffusion anisotropy indices (DAIs). Most often, the fractional anisotropy (FA) is used, but several alternative DAIs have been introduced in attempts to maximize the contrast-to-noise ratio (CNR) in diffusion anisotropy maps. Examples include the scaled relative anisotropy (sRA), the gamma variate anisotropy index (GV), the surface anisotropy (UAsurf), and the lattice index (LI). With the advent of multidimensional diffusion encoding it became possible to determine the presence of microscopic diffusion anisotropy in a voxel, which is theoretically independent of orientation coherence. In accordance with DTI, the microscopic anisotropy is typically quantified by the microscopic fractional anisotropy (µFA). In this work, in addition to the µFA, the four microscopic diffusion anisotropy indices (µDAIs) µsRA, µGV, µUAsurf, and µLI are defined in analogy to the respective DAIs by means of the average diffusion tensor and the covariance tensor. Simulations with three representative distributions of microscopic diffusion tensors revealed distinct CNR differences when differentiating between isotropic and microscopically anisotropic diffusion. q-Space trajectory imaging (QTI) was employed to acquire brain in-vivo maps of all indices. For this purpose, a 15min protocol featuring linear, planar, and spherical tensor encoding was used. The resulting maps were of good quality and exhibited different contrasts, e.g. between gray and white matter. This indicates that it may be beneficial to use more than one µDAI in future investigational studies.


Subject(s)
Brain Mapping/methods , Diffusion Tensor Imaging/methods , Image Processing, Computer-Assisted/methods , Anisotropy , Brain/diagnostic imaging , Diffusion , Humans
5.
Magn Reson Med ; 83(5): 1741-1749, 2020 05.
Article in English | MEDLINE | ID: mdl-31657868

ABSTRACT

PURPOSE: Diffusion times longer than 50 ms are typically probed with stimulated-echo sequences. Varying the diffusion time in stimulated-echo sequences affects the T1 weighting of subcompartments, complicating the analysis of diffusion time dependence. Although inversion recovery preparation could be used to change the T1 weighting, it cannot ensure equal T1 weighting at arbitrary mixing times. In this article, a sequence that ensures constant T1 weighting over a wide range of diffusion times is presented. METHODS: The proposed sequence features 2 independent longitudinal storage periods: TM1 and TM2 . Diffusion encoding is performed during TM1 , effectively coupling the diffusion time and TM1 . Equal T1 weighting at arbitrary diffusion times is realized by keeping the total mixing time TM1 + TM2 constant. The sequence was compared with conventional stimulated-echo measurements of diffusion in a 2-compartment phantom consisting of distilled water and paraffinum perliquidum. Additionally, in vivo DTI of the brain was carried out for 8 healthy volunteers with diffusion times ranging from 50 to 500 ms. RESULTS: Diffusion time dependence of the axial and radial diffusivity was detected in the brain. Both sequences resulted in almost identical diffusivities in white matter. In regions containing partial volumes of gray and white matter, a dependency on T1 weighting was observed. CONCLUSION: In accordance with previous studies, little variance of T1 values appeared to be present in healthy white matter. However, this is likely different in diseased tissue. Here, the proposed sequence can be effective in differentiating between diffusion time dependence and T1 weighting effects.


Subject(s)
Theophylline , White Matter , Brain/diagnostic imaging , Diffusion , Diffusion Magnetic Resonance Imaging , Humans , White Matter/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...