Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Chemosphere ; 345: 140423, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37839749

ABSTRACT

A mapping study targeting emissions of polycyclic aromatic compounds (PACs) from an oil sands tailings pond was undertaken in the Athabasca Oil sands Region (AOSR). Ten passive air samplers comprising polyurethane foam (PUF) disks were deployed around the perimeter of Suncor Tailings Pond 2/3 for a five-week period to generate time-integrated concentrations in air for PACs, which included ∑unsubstituted polycyclic aromatic hydrocarbons (PAHs), ∑alkylated PAHs (alk-PAHs), and ∑dibenzothiophenes (DBTs) (both unsubstituted and alkylated). Concentrations in air ranged from 13 to 70, 220-970, and 30-210 ng/m3, respectively, and were elevated in samplers downwind of the tailings pond. PAC emissions to air from the pond were estimated using only the air-side concentration information by applying a simplified Gaussian dispersion model and found to be 896 µg/m2/day. ∑alk-PAHs and ∑DBTs had the highest contribution to the total PAC fluxes (79% and 16%, respectively). This flux estimate for PACs is equivalent to 460 kg on an annual basis and 35 000 kg/year when scaled to represent all tailings ponds in the region. The results generally agree with fluxes estimated from coupled high volume air sampling data and tailings pond water concentrations from the same field study but which are complicated due to uncertainties associated with the use of pure water Henry's Law values for tailings pond water as well as the potential for surface oily films on the tailings ponds to impact water-air exchange of PACs. Overall, these findings support the use of relatively simple and electricity-free PUF disk samplers for mapping and estimating emissions from area sources such as tailings ponds, using only air-side concentration information.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Polycyclic Compounds , Oil and Gas Fields , Ponds , Polycyclic Aromatic Hydrocarbons/analysis , Water , Environmental Monitoring/methods , Air Pollutants/analysis , Alberta
2.
Environ Pollut ; 323: 121291, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36796663

ABSTRACT

The study reports on the atmospheric concentrations of per- and polyfluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) measured using sorbent-impregnated polyurethane foam disks (SIPs) passive air samplers. New results are reported for samples collected in 2017, which extends temporal trend information to the period 2009-2017, for 21 sites where SIPs have been deployed since 2009. Among neutral PFAS, fluorotelomer alcohols (FTOHs) had higher concentrations than perfluoroalkane sulfonamides (FOSAs) and perfluoroalkane sulfonamido ethanols (FOSEs) with levels of ND‒228, ND‒15.8, ND‒10.4 pg/m3, respectively. Among ionizable PFAS, the sum of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in air were 0.128-781 and 6.85-124 pg/m3, respectively. Longer-chain i.e. C9-C14 PFAS, which are relevant to the recent proposal by Canada for a listing of long-chain (C9-C21) PFCAs to the Stockholm Convention, were also detected in the environment at all site categories including Arctic sites. Cyclic and linear VMS ranged between 1.34‒452 and 0.01-12.1 ng/m3, respectively, showing dominance in urban areas. Despite the wide range of levels observed across different site categories, geometric means of the PFAS and VMS groups were fairly similar when grouped according to the five United Nations regions. Variable temporal trends in air (2009-2017) were observed for both PFAS and VMS. PFOS, which has been listed in the Stockholm Convention since 2009, is still showing increasing tendencies at several sites, indicating constant input from direct and/or indirect sources. These new data inform international chemicals management for PFAS and VMS.


Subject(s)
Air Pollutants , Fluorocarbons , Fluorocarbons/analysis , Environmental Monitoring/methods , Siloxanes/analysis , Air Pollutants/analysis , Carboxylic Acids
3.
Environ Sci Technol ; 55(14): 9479-9488, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34213310

ABSTRACT

The Global Atmospheric Passive Sampling (GAPS) network, initiated in 2005 across 55 global sites, supports the global monitoring plan (GMP) of the Stockholm Convention on Persistent Organic Pollutants (POPs) by providing information on POP concentrations in air on a global scale. These data inform assessments of the long-range transport potential of POPs and the effectiveness evaluation of chemical regulation efforts, by observing changes in concentrations over time. Currently, measurements spanning 5-10 sampling years are available for 40 sites from the GAPS Network. This study was the first time that POP concentrations in air were reported on a global scale for an extended time period and the first to evaluate worldwide trends with an internally consistent sample set. For consistency between sampling years, site- and sample specific sampling rates were calculated with a new, public online model, which accounts for the effects of wind speed variability. Concentrations for legacy POPs in air between 2005 and 2014 show different trends for different organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). The POPs discussed in this study were chosen due to being the most frequently detected, with detection at the majority of sites. PCB, endosulfan, and hexachlorocyclohexane (HCH) concentrations in air are decreasing at most sites. The global trends reflect global sources and recycling of HCH, ongoing emissions from old stockpiles for PCBs, and recent use restrictions for endosulfan. These chlorinated OCPs continue to present exposure threat to humans and ecosystems worldwide. Concentrations of other OCPs, such as chlordanes, heptachlor and dieldrin, are steady and/or declining slowly at the majority of sites, reflecting a transition from primary to secondary sources (i.e., re-emission from reservoirs where these POPs have accumulated historically) which now control ambient air burdens.


Subject(s)
Air Pollutants , Environmental Pollutants , Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Air Pollutants/analysis , Ecosystem , Environmental Monitoring , Environmental Pollutants/analysis , Humans , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Polychlorinated Biphenyls/analysis
4.
Sci Total Environ ; 714: 136746, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32041017

ABSTRACT

Legacy persistent organic pollutants (POPs), including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs), persist for generations in the environment and often negatively impact endocrine functions in exposed wildlife. Protocols to assess the bioaccumulation potential of these chemicals within terrestrial systems are far less developed than for aquatic systems. Consequently, regulatory agencies in Canada, the United States, and the European Union rely primarily on aquatic information for the bioaccumulation assessment of chemicals. However, studies have shown that some chemicals that are not bioaccumulative in aquatic food webs can biomagnify in terrestrial food webs. Thus, to better understand the bioaccumulative behaviour of chemicals in terrestrial systems, we examined trophic magnification of hydrophobic POPs in an urban terrestrial food web that included an avian apex predator, the Cooper's hawk (Accipiter cooperii). Over 100 samples were collected from various trophic levels of the food web including hawk eggs, songbirds, invertebrates, and berries and analysed for concentrations of 38 PCB congeners, 20 OCPs, 20 PBDE congeners, and 7 other brominated flame retardants listed on the Government of Canada's Chemicals Management Plan. We determined trophic magnification factors (TMFs) for contaminants that had a 50% or greater detection frequency in all biota samples and compared these terrestrial TMFs to those observed in aquatic systems. TMFs in this terrestrial food web ranged between 1.2 (0.21 SE) and 15 (4.0 SE), indicating that the majority of these POPs are biomagnifying. TMFs of the legacy POPs investigated in this terrestrial food web increased in a statistically significant relationship with both the logarithm of the octanol-air (log KOA) and octanal-water partition (log KOW) coefficients of the POPs. POPs with a log KOA >6 or a log KOW >5 exhibited biomagnification potential in this terrestrial food web.


Subject(s)
Environmental Pollutants , Food Chain , Animals , Canada , Environmental Monitoring , Fishes , Halogenated Diphenyl Ethers , Polychlorinated Biphenyls , Water Pollutants, Chemical
5.
Environ Pollut ; 243(Pt B): 1252-1262, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30268978

ABSTRACT

A special initiative in the Global Atmospheric Passive Sampling (GAPS) Network was implemented to provide information on new and emerging persistent organic pollutants (POPs) in the Group of Latin America and Caribbean (GRULAC) region. Regional-scale atmospheric concentrations of the new and emerging POPs hexachlorobutadiene (HCBD), pentachloroanisole (PCA) and dicofol indicators (breakdown products) are reported for the first time. HCBD was detected in similar concentrations at all location types (<20-120 pg/m3). PCA had elevated concentrations at the urban site Concepción (Chile) of 49-222 pg/m3, with concentrations ranging <1-8.5 pg/m3 at the other sites in this study. Dicofol indicators were detected at the agricultural site of Sonora (Mexico) at concentrations ranging 30-117 pg/m3. Legacy POPs, including a range of organochlorine (OC) pesticides and polychlorinated biphenyls (PCBs), were also monitored to compare regional atmospheric concentrations over a decade of monitoring under the GAPS Network. γ-hexachlorocyclohexane (HCH) and the endosulfans significantly decreased (p < 0.05) from 2005 to 2015, suggesting regional levels are decreasing. However, there were no significant changes for the other legacy POPs monitored, likely a reflection of the persistency and slow decline of environmental levels of these POPs. For the more volatile OCs, atmospheric concentrations derived from polyurethane foam (PUF) (acting as an equilibrium sampler) and sorbent impregnated PUF (SIP) (acting as a linear phase sampler), were compared. The complimentary methods show a good agreement of within a factor of 2-3, and areas for future studies to improve this agreement are further discussed.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Environmental Pollutants/analysis , Caribbean Region , Chile , Endosulfan , Hexachlorocyclohexane , Hydrocarbons, Chlorinated/analysis , Latin America , Mexico , Pesticides/analysis , Polychlorinated Biphenyls/analysis , Polyurethanes/analysis
6.
Environ Sci Technol ; 52(13): 7240-7249, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29846065

ABSTRACT

A special initiative was run by the Global Atmospheric Passive Sampling (GAPS) Network to provide atmospheric data on a range of emerging chemicals of concern and candidate and new persistent organic pollutants in the Group of Latin America and Caribbean (GRULAC) region. Regional-scale data for a range of flame retardants (FRs) including polybrominated diphenyl ethers (PBDEs), organophosphate esters (OPEs), and a range of alternative FRs (novel FRs) are reported over 2 years of sampling with low detection frequencies of the novel FRs. Atmospheric concentrations of the OPEs were an order of magnitude higher than all other FRs, with similar profiles at all sites. Regional-scale background concentrations of the poly- and perfluoroalkyl substances (PFAS), including the neutral PFAS (n-PFAS) and perfluoroalkyl acids (PFAAs), and the volatile methyl siloxanes (VMS) are also reported. Ethyl perfluorooctane sulfonamide (EtFOSA) was detected at highly elevated concentrations in Brazil and Colombia, in line with the use of the pesticide sulfluramid in this region. Similar concentrations of the perfluoroalkyl sulfonates (PFAS) were detected throughout the GRULAC region regardless of location type, and the VMS concentrations in air increased with the population density of sampling locations. This is the first report of atmospheric concentrations of the PFAAs and VMS from this region.


Subject(s)
Environmental Pollutants , Flame Retardants , Brazil , Caribbean Region , Colombia , Environmental Monitoring , Halogenated Diphenyl Ethers , Latin America
7.
Environ Pollut ; 238: 94-102, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29547866

ABSTRACT

Poly- and per-fluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) were monitored at 21 sites in the Global Atmospheric Passive Sampling (GAPS) Network. Atmospheric concentrations previously reported from 2009 were compared to concentrations measured at these sites in 2013 and 2015, to assess trends over 7 years of monitoring. Concentrations of the fluorotelomer alcohols (FTOHs) and fluorinated sulfonamides and sulfonamidoethanols (FOSAs and FOSEs) were stable at these sites from 2009 to 2015 with no significant difference (p > 0.05) in concentrations. Elevated concentrations of all the neutral PFAS were detected at the urban sites as compared to the polar/background sites. The perfluorosulfonic acids (PFSAs), meanwhile, saw a significant increase (p < 0.001) in concentrations from 2009 to 2015. The perfluorocarboxylic acids (PFCAs) had elevated concentrations in 2015, however, the difference was not statistically significant (p > 0.05). Concentrations of the PFSAs and the PFCAs were similar at all location types, showing the global reach of these persistent compounds. Concentrations of the cyclic VMS (cVMS) were at least an order of magnitude higher than the linear VMS (lVMS) and the PFAS. Octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6) saw a weak significant increase in concentrations from 2009 to 2013 (p < 0.05), however, hexamethylcyclotrisiloxane (D3) had a strong significant decrease in concentrations from 2009 to 2015 (p < 0.01).


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Fluorocarbons/analysis , Siloxanes/analysis , Volatile Organic Compounds/analysis , Fluorocarbon Polymers/analysis , Volatile Organic Compounds/chemistry
8.
Environ Sci Technol ; 52(5): 2777-2789, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29406704

ABSTRACT

Polyurethane foam (PUF) disk passive air samples, deployed during 2014 in the Global Atmospheric Passive Sampling (GAPS) Network, were analyzed for a range of flame retardants (FRs) including polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), brominated and chlorinated novel FRs, and organophosphate esters (OPEs). Mean concentrations of PBDEs and novel FRs at the 48 sites monitored ranged from 0.097 to 93 pg/m3 for Σ14PBDEs and from below detection limits to 126 pg/m3 for Σ15novel FRs. For PBDEs, the detected concentrations were similar to those previously reported from samples collected in 2005 at GAPS sites, suggesting global background atmospheric concentrations of PBDEs have not declined since regulatory measures were implemented. OPEs were detected at every GAPS site, with Σ18OPEs ranging from 69 to 7770 pg/m3. OPE concentrations were at least an order of magnitude higher than the PBDEs. This study presents the first data on global distributions of OPEs in the atmosphere, obtained from a single passive sampling monitoring network. Challenges that can arise in passive air sampling campaigns are also highlighted and addressed with suggested recommendations for future campaigns.


Subject(s)
Flame Retardants , Environmental Monitoring , Esters , Halogenated Diphenyl Ethers , Organophosphates
9.
Sci Total Environ ; 624: 250-261, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29253773

ABSTRACT

In the Athabasca Oil Sands (OS) Region, the exposure (by air, water, diet), uptake and deposition of polycyclic aromatic compounds (PACs), including parent and alkylated hydrocarbons (PAHs) and dibenzothiophenes (DBTs), was assessed in nestling tree swallows (Tachycineta bicolor) at mining-related (OS1, OS2) and reference (REF) sites. The OS sites did not receive oil-sands processed waters (OSPW) and were ≥60km from the reference sites. Most of the 42 PACs (≤98%) were detected in all matrices. Swallows at the OS sites were exposed to higher air and water concentrations of individual PAC congeners, ΣPACs, Σparent-PAHs, Σalkyl-PAHs and ΣDBTs. Compared to reference nestlings (ΣPACs: 13-27ng/g wet weight (ww)), PACs were significantly higher in OS nestlings (31-106ng/gww) that also accumulated higher concentrations of major PAHs (i.e., naphthalene, C1-naphthalene, C2-naphthalene, C1-fluorenes, C2-fluorenes, C1-phenanthrenes) measured in 60% of nestlings. Uptake and deposition of PAHs in the birds' muscle was related to diet (δ15N: C1-naphthalenes, C2-naphthalenes, C1-fluorenes), water (C1-phenanthrenes), and air through inhalation and feather preening (C1-fluorenes), but fecal concentrations were not well explained by diet or environmental concentrations. While PAH concentrations were much higher in muscle than feces, they were highly correlated (p≤0.001 for all). Thus feces may represent a non-lethal method for characterizing PAH exposure of birds, with muscle characterizing accumulation and sources of PAH exposure. Tree swallows in the Athabasca OS Region are exposed to many PACs, accumulating higher concentrations when developing in close proximity to mining activity through diet, aerial deposition and mining-impacted freshwater sources (e.g., wetlands).


Subject(s)
Environmental Exposure/analysis , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons/metabolism , Swallows , Animals , Canada , Mining , Oil and Gas Fields
10.
Chemosphere ; 174: 638-642, 2017 May.
Article in English | MEDLINE | ID: mdl-28199940

ABSTRACT

Polyurethane foam - air partition coefficients (KPUF-air) for 9 polycyclic aromatic hydrocarbons (PAHs), 10 alkyl-substituted PAHs, 4 organochlorine pesticides (OCPs) and dibenzothiophene were measured as a function of temperature over the range 5 °C-35 °C, using a generator column approach. Enthalpies of PUF-to-air transfer (ΔHPUF-air, kJ/mol) were determined from the slopes of log KPUF-air versus 1000/T (K), and have an average value of 81.2 ± 7.03 kJ/mol. The log KPUF-air values at 22 °C ranged from 4.99 to 7.25. A relationship for log KPUF-air versus log KOA was shown to agree with a previous relationship based on only polychlorinated biphenyls (PCBs) and derived from long-term indoor uptake study experiments. The results also confirm that the existing KOA-based model for predicting log KPUF-air values is accurate. This new information is important in the derivation of uptake profiles and effective air sampling volumes for PUF disk samplers so that results can be reported in units of concentration in air.


Subject(s)
Air Pollutants/chemistry , Hydrocarbons, Chlorinated/chemistry , Pesticides/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Polyurethanes/chemistry , Thiophenes/chemistry , Environmental Monitoring/methods , Models, Theoretical , Temperature
11.
Chemosphere ; 167: 212-219, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27723477

ABSTRACT

This study aimed to characterize the uptake of organophosphate esters (OPEs) by polyurethane foam (PUF) and sorbent-impregnated polyurethane foam (SIP) disk passive air samplers (PAS). Atmospheric OPE concentrations were monitored with high-volume active air samplers (HV-AAS) that were co-deployed with passive air samplers. Samples were analyzed for tris(2-chloroisopropyl) phosphate (TCIPP), tri(phenyl) phosphate (TPhP), tris(2-chloroethyl) phosphate (TCEP), and tris(2,3-dichloropropyl) phosphate (TDCIPP). The mean concentration of ∑OPEs in air was 2650 pg/m3 for the HV-AAS. Sampling rates and the passive sampler medium (PSM)-air partition coefficient (KPSM-Air) were calculated for individual OPEs. The average calculated sampling rates (R) for the four OPEs were 3.6 ± 1.2 and 4.2 ± 2.0 m3/day for the PUF and SIP disks, respectively, and within the range of the recommended default value of 4 ± 2 m3/day. Since most of the OPEs remained in the linear uptake phase during the study, COSMO-RS solvation theory and an oligomer-based model were used to estimate KPUF-Air for the OPEs. The estimated values of log KPUF-Air were 7.45 (TCIPP), 9.35 (TPhP), 8.44 (TCEP), and 9.67 (TDCIPP). Finally, four configurations of the PUF and SIP disks were tested by adjusting the distance of the gap opening between the upper and lower domes of the sampler housing: i.e. 2 cm, 1 cm, no gap and 1 cm overlap. The sampling rate did not differ significantly between these four configurations (p < 0.05).


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/instrumentation , Flame Retardants/analysis , Organophosphates/analysis , Polyurethanes/chemistry , Environmental Monitoring/methods , Models, Theoretical
12.
Chemosphere ; 145: 360-4, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26692513

ABSTRACT

Isomers of alkyl-substituted polycyclic aromatic hydrocarbons (PAHs) and dibenzothiophenes are modelled with COSMO-RS theory to determine the effectiveness and accuracy of this approach for estimation of isomer-specific partition coefficients between air and polyurethane foam (PUF), i.e., KPUF-AIR. Isomer-specific equilibrium partitioning coefficients for a series of 23 unsubstituted and isomeric alkyl-substituted PAHs and dibenzothiophenes were measured at 22 °C. This data was used to determine the accuracy of estimated values using COSMO-RS, which is isomer specific, and the Global Atmospheric Passive Sampling (GAPS) template approach, which treats all alkyl-substitutions as a single species of a given side-chain carbon number. A recently developed oligomer-based model for PUF was employed, which consisted of a 1:1 condensed pair of 2,4-toluene-diisocyanide and glycerol. The COSMO-RS approach resulted in a significant reduction in the RMS error associated with simple PAHs and dibenzothiophene compared with the GAPS template approach. When used with alkylated PAHs and dibenzothiophenes grouped into carbon-number categories, the GAPS template approach gave lower RMS error (0.72) compared to the COSMO-RS result (0.87) when the latter estimates were averaged within the carbon-number-based categories. When the isomer-specific experimental results were used, the COSMO-RS approach resulted in a 21% reduction in RMS error with respect to the GAPS template approach, with a 0.57 RMS error for all alkylated PAHs and dibenzothiophenes studied. The results demonstrate that COSMO-RS theory is effective in generating isomer-specific PUF-air partition coefficients, supporting the application of PUF-based passive samplers for monitoring and research studies of polycyclic aromatic compounds (PACs) in air.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/instrumentation , Polycyclic Aromatic Hydrocarbons/analysis , Polyurethanes , Environmental Monitoring/methods , Models, Theoretical
13.
Environ Sci Technol ; 49(5): 2991-8, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25602941

ABSTRACT

Results are reported from an ongoing passive air monitoring study for polycyclic aromatic compounds (PACs) in the Athabasca oil sands region in Alberta, Canada. Polyurethane foam (PUF) disk passive air samplers were deployed for consecutive 2-month periods from November 2010 to June 2012 at 17 sites. Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, dibenzothiophene and its alkylated derivatives (DBTs). Relative to parent PAHs, alkylated PAHs and DBTs are enriched in bitumen and therefore considered to be petrogenic markers. Concentrations in air were in the range 0.03-210 ng/m(3), 0.15-230 ng/m(3) and 0.01-61 ng/m(3) for ∑PAHs, ∑alkylated PAHs and ΣDBTs, respectively. An exponential decline of the PAC concentrations in air with distance from mining areas and related petrogenic sources was observed. The most significant exponential declines were for the alkylated PAHs and DBTs and attributed to their association with mining-related emissions and near-source deposition, due to their lower volatility and greater association with depositing particles. Seasonal trends in concentrations in air for PACs were not observed for any of the compound classes. However, a forest fire episode during April to July 2011 resulted in greatly elevated PAH levels at all passive sampling locations. Alkylated PAHs and DBTs were not elevated during the forest fire period, supporting their association with petrogenic sources. Based on the results of this study, an "Athabasca PAC profile" is proposed as a potential source marker for the oil sands region. The profile is characterized by ∑PAHs/∑Alkylated PAHs = ∼0.2 and ∑PAHs/∑DBTs = ∼5.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Oil and Gas Fields/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Alberta
SELECTION OF CITATIONS
SEARCH DETAIL
...