Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Nat Commun ; 15(1): 4859, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849339

ABSTRACT

One-dimensional (1D) olivine iron phosphate (FePO4) is widely proposed for electrochemical lithium (Li) extraction from dilute water sources, however, significant variations in Li selectivity were observed for particles with different physical attributes. Understanding how particle features influence Li and sodium (Na) co-intercalation is crucial for system design and enhancing Li selectivity. Here, we investigate a series of FePO4 particles with various features and revealed the importance of harnessing kinetic and chemo-mechanical barrier difference between lithiation and sodiation to promote selectivity. The thermodynamic preference of FePO4 provides baseline of selectivity while the particle features are critical to induce different kinetic pathways and barriers, resulting in different Li to Na selectivity from 6.2 × 102 to 2.3 × 104. Importantly, we categorize the FePO4 particles into two groups based on their distinctly paired phase evolutions upon lithiation and sodiation, and generate quantitative correlation maps among Li preference, morphological features, and electrochemical properties. By selecting FePO4 particles with specific features, we demonstrate fast (636 mA/g) Li extraction from a high Li source (1: 100 Li to Na) with (96.6 ± 0.2)% purity, and high selectivity (2.3 × 104) from a low Li source (1: 1000 Li to Na) with (95.8 ± 0.3)% purity in a single step.

2.
ACS Appl Mater Interfaces ; 16(1): 712-722, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38157368

ABSTRACT

Mineralization by MgO is an attractive potential strategy for direct air capture (DAC) of CO2 due to its tendency to form carbonate phases upon exposure to water and CO2. Hydration of MgO during this process is typically assumed to not be rate limiting, even at ambient temperatures. However, surface passivation by hydrated phases likely reduces the CO2 capture capacity. Here, we examine the initial hydration reactions that occur on MgO(100) surfaces to determine whether they could potentially impact CO2 uptake. We first used atomic force microscopy (AFM) to explore changes in reaction layers in water (pH = 6 and 12) and MgO-saturated solution (pH = 11) and found the reaction layers on MgO are heterogeneous and nonuniform. To determine how relative humidity (R.H.) affects reactivity, we reacted samples at room temperature in nominally dry N2 (∼11-12% R.H.) for up to 12 h, in humid (>95% R.H.) N2 for 5, 10, and 15 min, and in air at 33 and 75% R.H. for 8 days. X-ray reflectivity and electron microscopy analysis of the samples reveal that hydrated phases form rapidly upon exposure to humid air, but the growth of the hydrated reaction layer slows after its initial formation. Reaction layer thickness is strongly correlated with R.H., with denser reaction layers forming in 75% R.H. compared with 33% R.H. or nominally dry N2. The reaction layers are likely amorphous or poorly crystalline based on grazing incidence X-ray diffraction measurements. After exposure to 75% R.H. in air for 8 days, the reaction layer increases in density as compared to the sample reacted in humid N2 for 5-15 min. This may represent an initial step toward the crystallization of the reaction layer. Overall, high R.H. favors the formation of a hydrated, disordered layer on MgO. Based on our results, DAC in a location with a higher R.H. will be favorable, but growth may slow significantly from initial rates even on short timescales, presumably due to surface passivation.

3.
Case Rep Oncol ; 16(1): 1324-1334, 2023.
Article in English | MEDLINE | ID: mdl-37942404

ABSTRACT

Introduction: Colorectal cancer is the third most common cancer worldwide, with 25% of patients being diagnosed with metastatic disease, mostly in the liver, resulting in poor survival. Standard treatment of stage-IV colorectal cancer consists of primary tumour resection followed by chemotherapy. Case Presentation: Here, we report on the treatment effectiveness using integrative therapies in a 52-year-old male with metastatic colon cancer and liver lesions to achieve stable partial remission with an overall high level of wellbeing. After surgical removal of the primary tumour, the 8-month integrative treatment regime consisted of standard anti-angiogenesis treatment, as well as multiple non-standard but evidence-based therapies, including high-dose intravenous nutrients and herbal therapies, oral intake of repurposed medication and nutritional supplements, and a 4-month targeted electromagnetic field/Rife frequency therapy. Conclusion: The integrative therapies used in this case study were highly tolerable and effective in the treatment of metastatic colon cancer with liver lesions, achieving substantial tumour response and stable partial remission with a high level of wellbeing.

4.
Sci Adv ; 9(20): eadg4159, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37205753

ABSTRACT

Diamond shows unprecedented hardness. Because hardness is a measure of resistance of chemical bonds in a material to external indentation, the electronic bonding nature of diamond beyond several million atmospheres is key to understanding the origin of hardness. However, probing the electronic structures of diamond at such extreme pressure has not been experimentally possible. The measurements on the inelastic x-ray scattering spectra for diamond up to 2 million atmospheres provide data on the evolution of its electronic structures under compression. The mapping of the observed electronic density of states allows us to obtain a two-dimensional image of the bonding transitions of diamond undergoing deformation. The spectral change near edge onset is minor beyond a million atmospheres, while its electronic structure displays marked pressure-induced electron delocalization. Such electronic responses indicate that diamond's external rigidity is supported by its ability to reconcile internal stress, providing insights into the origins of hardness in materials.

5.
Environ Sci Technol ; 57(1): 266-276, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36562683

ABSTRACT

Interactions of heavy metals with charged mineral surfaces control their mobility in the environment. Here, we investigate the adsorption of Y(III) onto the orthoclase (001) basal plane, the former as a representative of rare earth elements and an analogue of trivalent actinides and the latter as a representative of naturally abundant K-feldspar minerals. We apply in situ high-resolution X-ray reflectivity to determine the sorption capacity and molecular distribution of adsorbed Y species as a function of the Y3+ concentration, [Y3+], at pH 7 and 5. With [Y3+] ≥ 1 mM at pH 7, we observe an inner-sphere (IS) sorption complex at a distance of ∼1.5 Å from the surface and an outer-sphere (OS) complex at 3-4 Å. Based on the adsorption height of the IS complex, a bidentate, binuclear binding mode, in which Y3+ binds to two terminal oxygens, is proposed. In contrast, mostly OS sorption is observed at pH 5. The observed maximum Y coverage is ∼1.3 Y3+/AUC (AUC: area of the unit cell = 111.4 Å2) for all the investigated pH values and Y concentrations, which is in the expected range based on the estimated surface charge of orthoclase (001).


Subject(s)
Metals, Heavy , Silicates , X-Rays , Minerals , Adsorption
6.
Allergol Select ; 6: 167-232, 2022.
Article in English | MEDLINE | ID: mdl-36178453

ABSTRACT

Not available.

7.
Environ Sci Technol ; 55(18): 12403-12413, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34478280

ABSTRACT

Calcite is the most stable polymorph of calcium carbonate (CaCO3) under ambient conditions and is ubiquitous in natural systems. It plays a major role in controlling pH in environmental settings. Electrostatic phenomena at the calcite-water interface and the surface reactivity of calcite in general have important environmental implications. They may strongly impact nutrient and contaminant mobility in soils and other subsurface environments, they control oil recovery from limestone reservoirs, and they may impact the safety of nuclear waste disposal sites. Besides the environmental relevance, the topic is significant for industrial applications and cultural heritage preservation. In this study, the structure of the calcite(104)-water interface is investigated on the basis of a new extensive set of crystal truncation rod data. The results agree with recently reported structures and resolve previous ambiguities with respect to the coordination sphere of surface Ca ions. These structural features are introduced into an electrostatic three-plane surface complexation model, describing ion adsorption and charging at the calcite-water interface. Inner surface potential data for calcite, as measured with a calcite single-crystal electrode, are used as constraints for the model in addition to zeta potential data. Ion adsorption parameters are compared with molecular dynamics simulations. All model parameters, including protonation constants, ion-binding parameters, and Helmholtz capacitances, are within physically and chemically plausible ranges. A PhreeqC version of the model is presented, which we hope will foster application of the model in environmental studies.


Subject(s)
Calcium Carbonate , Water , Adsorption , Ions , Molecular Dynamics Simulation
8.
Front Oncol ; 10: 582, 2020.
Article in English | MEDLINE | ID: mdl-32391268

ABSTRACT

The current screening-test for prostate cancer, affecting 10% of men worldwide, has a high false negative rate and a low true positive rate. A more reliable screening test is needed. Circulating-Tumor-Cells (CTC) provide a biomarker for early carcinogenesis, cancer progression and treatment effectiveness. The cytology-based ISET®-CTC Test is a clinically validated blood test with high sensitivity and specificity. This study aimed to evaluate the ISET®-CTC test combined with prostate-specific-marker staining as a screening test for the detection of prostate cancer. We selected a group of 47 men from our ongoing CTC screening study involving 2,000 patient-tests from Sep-2014 to July-2019, who also underwent standard diagnostic cancer testing before or after CTC testing. While 20 of the 47 men were diagnosed with prostate cancer before the ISET®-CTC test, 27 men underwent screening. We studied the CTC identified in 45 CTC-positive men by Immuno-Cyto-Chemistry (ICC) assays with the prostate-specific-marker PSA. CTC were ICC-PSA-marker positive in all men diagnosed with primary prostate cancer (n = 20). Secondary cancers were detected in 63% (n = 7/11) of men with mixed CTC-population (ICC-PSA-positive/ICC-PSA-negative). Of the 27 men screened, 25 had CTC, and 84% of those (n = 20) were positive for the prostate-specific-PSA-marker. Follow-up testing suggested suspected prostate cancer in 20/20 men by a positive PSMA-PET scan, and biopsies performed in 45% (n = 9/20) men confirmed the diagnosis of early prostate cancer. Kidney cancer or B-cell lymphoma were detected in two men with ICC-PSA-marker negative CTC. Our study suggests that the combination of ISET®-CTC and ICC-PSA-marker-testing has an estimated positive-predictive-value (PPV) of 99% and a negative-predictive-value (NPV) of 97%, providing a more reliable screening test for prostate cancer than the standard PSA-blood-test (PPV = 25%; NPV = 15.5%). Our findings warrant further studies to evaluate the new test's potential for prostate cancer screening on a population level.

9.
J Synchrotron Radiat ; 26(Pt 5): 1763-1768, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31490168

ABSTRACT

Mineral inclusions in natural diamond are widely studied for the insight that they provide into the geochemistry and dynamics of the Earth's interior. A major challenge in achieving thorough yet high rates of analysis of mineral inclusions in diamond derives from the micrometre-scale of most inclusions, often requiring synchrotron radiation sources for diffraction. Centering microinclusions for diffraction with a highly focused synchrotron beam cannot be achieved optically because of the very high index of refraction of diamond. A fast, high-throughput method for identification of micromineral inclusions in diamond has been developed at the GeoSoilEnviro Center for Advanced Radiation Sources (GSECARS), Advanced Photon Source, Argonne National Laboratory, USA. Diamonds and their inclusions are imaged using synchrotron 3D computed X-ray microtomography on beamline 13-BM-D of GSECARS. The location of every inclusion is then pinpointed onto the coordinate system of the six-circle goniometer of the single-crystal diffractometer on beamline 13-BM-C. Because the bending magnet branch 13-BM is divided and delivered into 13-BM-C and 13-BM-D stations simultaneously, numerous diamonds can be examined during coordinated runs. The fast, high-throughput capability of the methodology is demonstrated by collecting 3D diffraction data on 53 diamond inclusions from Juína, Brazil, within a total of about 72 h of beam time.


Subject(s)
Diamond/chemistry , Synchrotrons , X-Ray Microtomography/methods , Equipment Design , Photons , X-Ray Diffraction
10.
Langmuir ; 34(41): 12270-12278, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30217107

ABSTRACT

We studied the adsorption behavior of ZrO2 nanoparticles on a muscovite (001) surface in the presence of cations from the alkali series (Li+, Na+, K+, Rb+, and Cs+). The results of X-ray reflectivity, i.e., specular crystal truncation rod and resonant anomalous X-ray reflectivity in combination with AFM images, show that the sorption of ZrO2 nanoparticles is significantly affected by the binding mode of alkali ions on the muscovite (001) surface. From solutions containing alkali ions binding as outer sphere surface complexes (i.e., Li+ and Na+), higher uptake of Zr4+ is observed corresponding to the binding of larger nanoparticles, which relatively easily replace the loosely bound alkali ions. However, Zr4+ uptake in solutions containing alkali ions binding as inner sphere surface complexes (i.e., K+, Rb+, and Cs+) is significantly lower, and smaller nanoparticles are found at the interface. In addition, the uptake of Zr4+ in the presence of inner sphere bound cations displays a strong linear relationship with the hydration energy of the coexisting alkali ion. The linear trend can be interpreted as competitive adsorption between ZrO2 nanoparticles and inner sphere bound alkali cations, which are replaced on the surface and undergo rehydration after release to the solution. The rehydration of alkali ions gives rise to a large energy gain, which dominates the reaction energy of the competitive adsorption process. The competitive adsorption mechanism of ZrO2 nanoparticles and alkali ions is discussed comprehensively to highlight the potential relationship between the hydration effect of alkali ions and the effect of charge density of the nanoparticles.

11.
J Colloid Interface Sci ; 524: 65-75, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29631220

ABSTRACT

A structural study of the surface complexation of Pb(II) on the (11¯02) surface of hematite was undertaken using crystal truncation rod (CTR) X-ray diffraction measurements under in situ conditions. The sorbed Pb was found to form inner sphere (IS) complexes at two types of edge-sharing sites on the half layer termination of the hematite (11¯02) surface. The best fit model contains Pb in distorted trigonal pyramids with an average PbO bond length of 2.27(4) Å and two characteristic Pb-Fe distances of 3.19(1) Å and 3.59(1) Å. In addition, a site coverage model was developed to simulate coverage as a function of sorbate-sorbate distance. The simulation results suggest a plausible Pb-Pb distance of 5.42 Å, which is slightly larger than the diameter of Pb's first hydration shell. This relates the best fit surface coverage of 0.59(4) Pb per unit cell at monolayer saturation to steric constraints as well as electrostatic repulsion imposed by the hydrated Pb complex. Based on the structural results we propose a stoichiometry of the surface complexation reaction of Pb(II) on the hematite (11¯02) surface and use bond valence analysis to assign the protonation schemes of surface oxygens. Surface reaction stoichiometry suggests that the proton release in the course of surface complexation occurs from the Pb-bound surface O atoms at pH 5.5.

12.
Langmuir ; 33(46): 13189-13196, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29084427

ABSTRACT

Uranium oxide is central to every stage of the nuclear fuel cycle, from mining through fuel fabrication and use, to waste disposal and environmental cleanup. Its chemical and mechanical stability are intricately linked to the concentration of interstitial O atoms within the structure and the oxidation state of U. We have previously shown that, during corrosion of the UO2 (111) surface under either 1 atm of O2 gas or oxygenated water at room temperature, oxygen interstitials diffuse into the substrate to form a superlattice with three-layer periodicity. In the current study, we present results from surface X-ray scattering that reveal the structure of the oxygen diffusion profile beneath the (001) surface. The first few layers below the surface oscillate strongly in their surface-normal lattice parameters, suggesting preferential interstitial occupation of every other layer below the surface, which is geometrically consistent with the interstitial network that forms below the oxidized (111) surface. Deeper layers are heavily contracted and indicate that the oxidation front penetrates ∼52 Šbelow the (001) surface after 21 days of dry O2 gas exposure at ambient pressure and temperature. X-ray photoelectron spectroscopy indicates U is present as U(IV), U(V), and U(VI).

13.
Phys Chem Chem Phys ; 19(45): 30473-30480, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29114651

ABSTRACT

The U 4f line is commonly used to determine uranium oxidation states with X-ray photoelectron spectroscopy (XPS). In contrast, the XPS of the shallow core-levels of uranium are rarely recorded. Nonetheless, theory has shown that the U 5d (and 5p) multiplet structure is very sensitive to oxidation state. In this contribution we extracted the U(iv) and U(v) 5d XPS peak shapes from near stoichiometric and oxidized UO2 single crystal samples, respectively, where the oxidation state of U was constrained by fitting the 4f line. The empirically extracted 5d spectra were similar to the theoretically determined multiplet structures and were used, along with the relatively simple U(vi) component that was constrained by theory, to determine the oxidation states of UO2+x samples. The results showed a very strong correlation between oxidation states determined by the 5d and 4f line and suggested that the 5d might be more sensitive to minor amounts of oxidation than the 4f. Limitations of the methodology, as well as advantages of using the 5d relative to the 4f line are discussed.

14.
Global Spine J ; 7(7): 617-623, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28989839

ABSTRACT

STUDY DESIGN: Retrospective cohort study. OBJECTIVE: Several studies have shown that the accuracy of pedicle screw placement significantly improves with use of computer-assisted surgery (CAS). Yet few studies have compared the incidence of postoperative complications between CAS and conventional techniques. The objective of this study is to determine the difference in postoperative complication rates between CAS and conventional techniques in spine surgery. METHODS: The American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database was used to identify patients who underwent posterior lumbar fusion from 2011 to 2013. Multivariate analysis was conducted to demonstrate the difference in postoperative complication rates between CAS and conventional techniques in spine surgery. RESULTS: Out of 15 222 patients, 14 382 (95.1%) were operated with conventional techniques and 740 (4.90%) were operated with CAS. Multivariate analysis showed that patients in the CAS group had fewer odds to experience adverse events postoperatively (odds ratio [OR] = 0.57, P < .001). Minor adverse events occurred in 2905 (20.2%) patients in the conventional group and in 98 (13.2%) patients in the CAS group (OR = 0.57, P < .001). Blood transfusion was present in 2488 (17.3%) of the patients in the conventional group compared to 81 (11.0%) of the patients in the CAS group (OR = 0.56, P < .001). The mean operative time in the conventional group was 205.2 ± 106.1 minutes, and it was 227.0 ± 111.9 minutes in the CAS group. This difference was statistically significant (r = 20.14, P < .001). CONCLUSION: This article examined the complications in lumbar spinal surgery with or without the use of CAS. These results suggest that CAS may provide a safer technique for implant placement in lumbar fusion surgeries.

15.
Asian Pac J Cancer Prev ; 18(8): 2275-2285, 2017 08 27.
Article in English | MEDLINE | ID: mdl-28843267

ABSTRACT

Background: Circulating-Tumour-Cells (CTC) provide a blood biomarker for early carcinogenesis, cancer progression and treatment effectiveness. An increase in CTCs is associated with cancer progression, a CTC decrease with cancer containment or remission. Several technologies have been developed to identify CTC, including the validated Isolation-by-Size-of-Epithelial-Tumour (ISET, Rarecells) technology, combining blood filtration and microscopy using standard histo-pathological criteria. Methods: This observational study compared CTC count to cancer status and cancer risk, by monitoring treatment effectiveness in cancer patients and by screening for CTC in asymptomatic patients with risk factors, including family history of cancer. Results: Between Sept-2014 and Dec-2016 we undertook 600 CTC tests (542 patients), including 50% screening requests of patients without cancer diagnosis but with risk factors. CTC were detected in all cancer patients (n=277, 100%), and in half of the asymptomatic patients screened (50%, 132 out-of 265 patients). Follow-up tests including scans, scheduled within 1-10 months of positive CTC tests, found early cancerous lesions in 20% of screened patients. In 50% of male patients with CTC and normal PSA (prostate-specific-antigen) levels, PSMA-PET scans revealed increased uptake in the prostate, indicative of early prostate cancer. Other types of cancers detected by CTC screening and subsequent scans included early breast, ovarian, lung, or renal cancer. Patients with CTC were advised on integrative approaches including immune-stimulating and anti-carcinogenic nutritional therapies. CTC repeat tests were available in 10% of patients with detected CTC (40 outof 409 patients, n=98 CTC tests) to assess treatment effectiveness, suggesting nutritional therapies to be beneficial in reducing CTC count. Conclusions: CTC screening provided a highly sensitive biomarker for the early detection of cancer, with higher CTC counts being associated with higher risk of malignancy. CTC monitoring over time indicated treatment effectiveness. Nutrients with anti-carcinogenic properties could reduce CTC count, and included curcumin, garlic, green tea, grape seed, modified citrus pectin, and medicinal mushroom extract.

16.
J Am Chem Soc ; 139(7): 2581-2584, 2017 02 22.
Article in English | MEDLINE | ID: mdl-28173705

ABSTRACT

The interaction of water with metal oxide surfaces plays a crucial role in the catalytic and geochemical behavior of metal oxides. In a vast majority of studies, the interfacial structure is assumed to arise from a relatively static lowest energy configuration of atoms, even at room temperature. Using hematite (α-Fe2O3) as a model oxide, we show through a direct comparison of in situ synchrotron X-ray scattering with density functional theory-based molecular dynamics simulations that the structure of the (11̅02) termination is dynamically stabilized by picosecond water exchange. Simulations show frequent exchanges between terminal aquo groups and adsorbed water in locations and with partial residence times consistent with experimentally determined atomic sites and fractional occupancies. Frequent water exchange occurs even for an ultrathin adsorbed water film persisting on the surface under a dry atmosphere. The resulting time-averaged interfacial structure consists of a ridged lateral arrangement of adsorbed water molecules hydrogen bonded to terminal aquo groups. Surface pKa prediction based on bond valence analysis suggests that water exchange will influence the proton-transfer reactions underlying the acid/base reactivity at the interface. Our findings provide important new insights for understanding complex interfacial chemical processes at metal oxide-water interfaces.

17.
J Vis Exp ; (119)2017 01 16.
Article in English | MEDLINE | ID: mdl-28117811

ABSTRACT

In this report we describe detailed procedures for carrying out single crystal X-ray diffraction experiments with a diamond anvil cell (DAC) at the GSECARS 13-BM-C beamline at the Advanced Photon Source. The DAC program at 13-BM-C is part of the Partnership for Extreme Xtallography (PX^2) project. BX-90 type DACs with conical-type diamond anvils and backing plates are recommended for these experiments. The sample chamber should be loaded with noble gas to maintain a hydrostatic pressure environment. The sample is aligned to the rotation center of the diffraction goniometer. The MARCCD area detector is calibrated with a powder diffraction pattern from LaB6. The sample diffraction peaks are analyzed with the ATREX software program, and are then indexed with the RSV software program. RSV is used to refine the UB matrix of the single crystal, and with this information and the peak prediction function, more diffraction peaks can be located. Representative single crystal diffraction data from an omphacite (Ca0.51Na0.48)(Mg0.44Al0.44Fe2+0.14Fe3+0.02)Si2O6 sample were collected. Analysis of the data gave a monoclinic lattice with P2/n space group at 0.35 GPa, and the lattice parameters were found to be: a = 9.496 ±0.006 Å, b = 8.761 ±0.004 Å, c = 5.248 ±0.001 Å, ß = 105.06 ±0.03º, α = γ = 90º.


Subject(s)
Crystallography, X-Ray/methods , Diamond/chemistry , Powder Diffraction , Pressure , Synchrotrons
18.
J Environ Qual ; 46(6): 1158-1165, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29293842

ABSTRACT

X-ray microprobes (XRM) coupled with high-brightness synchrotron X-ray facilities are powerful tools for environmental biogeochemistry research. One such instrument, the XRM at the Geo Soil Enviro Center for Advanced Radiation Sources Sector 13 at the Advanced Photon Source (APS; Argonne National Laboratory, Lemont, IL) was recently improved as part of a canted undulator geometry upgrade of the insertion device port, effectively doubling the available undulator beam time and extending the operating energy of the branch supporting the XRM down to the sulfur K edge (2.3 keV). Capabilities include rapid, high-resolution, elemental imaging including fluorescence microtomography, microscale X-ray absorption fine structure spectroscopy including sulfur K edge capability, and microscale X-ray diffraction. These capabilities are advantageous for (i) two-dimensional elemental mapping of relatively large samples at high resolution, with the dwell times typically limited only by the count times needed to obtain usable counting statistics for low concentration elements, (ii) three-dimensional imaging of internal elemental distributions in fragile hydrated specimens, such as biological tissues, avoiding the need for physical slicing, (iii) spatially resolved speciation determinations of contaminants in environmental materials, and (iv) identification of contaminant host phases. In this paper, we describe the XRM instrumentation, techniques, applications demonstrating these capabilities, and prospects for further improvements associated with the proposed upgrade of the APS.


Subject(s)
Environmental Monitoring , Synchrotrons , Soil , X-Ray Absorption Spectroscopy , X-Ray Diffraction
19.
Langmuir ; 32(41): 10473-10482, 2016 Oct 18.
Article in English | MEDLINE | ID: mdl-27678146

ABSTRACT

X-ray scattering techniques [in situ resonant anomalous X-ray reflectivity (RAXR) and specular crystal truncation rods (CTR)] were used to compare muscovite (001) surfaces in contact with solutions containing either 0.1 mM plutonyl(VI) or 1 mM uranyl(VI) at pH = 3.2 ± 0.2, I(NaCl) = 0.1 M, as well as in situ grazing-incidence X-ray absorption near-edge structure (GI XANES) spectroscopy and ex situ alpha spectrometry. Details of the surface coverage are found to be very different. In the case of Pu, alpha spectrometry finds a surface coverage of 8.3 Pu/AUC (AUC = 46.72 Å2, the unit cell area), far in excess of the 0.5 Pu/AUC expected for ionic adsorption of PuO22+. GI XANES results show that Pu is predominantly tetravalent on the surface, and the CTR/RAXR results show that the adsorbed Pu is broadly distributed. Taken together with previous findings, the results are consistent with adsorption of Pu in the form of Pu(IV)-oxo-nanoparticles. In contrast, uranyl shows only negligible, if any, adsorption according to all methods applied. These results are discussed and compared within the context of known Pu and U redox chemistry.

20.
Phys Rev Lett ; 114(24): 246103, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-26196990

ABSTRACT

Using x-ray scattering, spectroscopy, and density-functional theory, we determine the structure of the oxidation front when a UO(2) (111) surface is exposed to oxygen at ambient conditions. In contrast to classical diffusion and previously reported bulk UO(2+x) structures, we find oxygen interstitials order into a nanoscale superlattice with three-layer periodicity and uranium in three oxidation states: IV, V, and VI. This oscillatory diffusion profile is driven by the nature of the electron transfer process, and has implications for understanding the initial stages of oxidative corrosion in materials at the atomistic level.


Subject(s)
Models, Chemical , Uranium Compounds/chemistry , Corrosion , Diffusion , Oxidation-Reduction , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...