Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biologicals ; 41(4): 247-53, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23665302

ABSTRACT

The cold-adapted (ca) live attenuated influenza vaccine (LAIV) strains are manufactured in embryonated hens' eggs. Recently, a clonal isolate from Madin Darby Canine Kidney (MDCK) cells was derived and characterized to assess its utility as a potential cell substrate for the manufacturing of LAIV [1]. Since MDCK cells are a transformed continuous cell line [2], and low levels of residual cellular components (DNA and protein) are found in the intermediates and final filled vaccine, we sought to characterize the uptake and clearance of MDCK DNA from tissues in order to assess theoretical risks associated with manufacturing LAIV in MDCK cell culture. In order to address this concern, MDCK DNA uptake and clearance studies were performed in Sprague Dawley rats. DNA extracted from MDCK Master Cell Bank (MCB) cells was administered via an intranasal (IN) or intramuscular (IM) route. Tissue distribution and clearance of MDCK DNA were then examined in fourteen selected tissue types at selected time points post-administration using a quantitative PCR assay specific for canine (SINE) DNA. Results from these studies demonstrate that the uptake and clearance of MDCK DNA from tissues vary depending on the route of administration. When DNA was administered intranasally, as compared to intramuscularly, detectable DNA levels were lower at all time points. Thus, the intranasal route of vaccine administration appears to reduce potential risk associated with residual host cell DNA that may be present in cell culture produced final vaccine products.


Subject(s)
DNA/pharmacokinetics , Administration, Intranasal , Animals , Chickens , DNA/adverse effects , DNA/chemistry , DNA/isolation & purification , DNA/pharmacology , Dogs , Influenza Vaccines/isolation & purification , Influenza Vaccines/pharmacology , Injections, Intramuscular , Madin Darby Canine Kidney Cells , Rats , Vaccines, Attenuated/isolation & purification , Vaccines, Attenuated/pharmacology
2.
Clin Cancer Res ; 13(23): 7217-23, 2007 Dec 01.
Article in English | MEDLINE | ID: mdl-18056203

ABSTRACT

PURPOSE: S-CKD602 is a STEALTH liposomal formulation of CKD-602, a camptothecin analogue. The cytotoxicity of camptothecin analogues is related to the duration of exposure in the tumor. STEALTH liposomal formulations contain lipid conjugated to methoxypolyethylene glycol and have been designed to prolong drug circulation time, increase tumor delivery, and improve the therapeutic index. For STEALTH liposomal formulations of anticancer agents to achieve antitumor effects, the active drug must be released into the tumor extracellular fluid (ECF). EXPERIMENTAL DESIGN: S-CKD602 at 1 mg/kg or nonliposomal CKD-602 at 30 mg/kg was administered once via tail vein to mice bearing A375 human melanoma xenografts. Mice (n = 3 per time point) were euthanized at 0.083 to 24 h, 48 h, and 72 h after S-CKD02 and from 0.083 to 24 h after nonliposomal CKD-602. Plasma samples were processed to measure encapsulated, released, and sum total (encapsulated plus released) CKD-602, and tumor and tissue samples were processed to measure sum total CKD-602. Microdialysis samples of tumor ECF were obtained from 0 to 2 h, 4 to 7 h, and 20 to 24 h after nonliposomal CKD-602 and from 0 to 2 h, 24 to 27 h, 48 to 51 h, and 72 to 75 h after S-CKD602. A liquid chromatography-mass spectrometry assay was used to measure the total (sum of lactone and hydroxyl acid) CKD-602. The area under the concentration-versus-time curves (AUC) from 0 to infinity and time >1 ng/mL in tumor were estimated. RESULTS: For S-CKD602, the CKD-602 sum total AUC in plasma and tumor and the CKD-602 AUC in tumor ECF were 201,929, 13,194, and 187 ng/mL h, respectively. For S-CKD602, 82% of CKD-602 remains encapsulated in plasma. For nonliposomal CKD-602, the CKD-602 AUC in plasma and tumor and the CKD-602 AUC in tumor ECF were 9,117, 11,661, and 639 ng/mL.h, respectively. The duration of time the CKD-602 concentration was >1 ng/mL in tumor ECF after S-CKD602 and nonliposomal CKD-602 was >72 and approximately 20 h, respectively. For S-CKD602, the CKD-602 sum total exposure was 1.3-fold higher in fat as compared with muscle. The ratio of CKD-602 sum total exposure in fat to muscle was 3.8-fold higher after administration of S-CKD602 compared with nonliposomal CKD-602. CONCLUSION: S-CKD602 provides pharmacokinetic advantages in plasma, tumor, and tumor ECF compared with nonliposomal CKD-602 at 1/30th of the dose, which is consistent with the improved antitumor efficacy of S-CKD602 in preclinical studies. The distribution of S-CKD602 is greater in fat compared with muscle whereas the distribution of nonliposomal CKD-602 is greater in muscle compared with fat. These results suggest that the body composition of a patient may affect the disposition of S-CKD602 and released CKD-602.


Subject(s)
Camptothecin/analogs & derivatives , Liposomes/pharmacokinetics , Melanoma/metabolism , Polyethylene Glycols/pharmacokinetics , Animals , Camptothecin/administration & dosage , Camptothecin/blood , Camptothecin/pharmacokinetics , Cell Line, Tumor , Drug Screening Assays, Antitumor , Extracellular Fluid/metabolism , Female , Humans , Liposomes/administration & dosage , Melanoma/blood , Melanoma/drug therapy , Mice , Mice, SCID , Microdialysis/methods , Polyethylene Glycols/administration & dosage , Tissue Distribution , Transplantation, Heterologous , Xenograft Model Antitumor Assays
3.
Bioconjug Chem ; 18(6): 1869-78, 2007.
Article in English | MEDLINE | ID: mdl-17935288

ABSTRACT

New thiolytically cleavable dithiobenzyl (DTB) urethane-linked conjugates of methoxypoly(ethylene glycol) (mPEG) and a model protein, lysozyme, were prepared and thoroughly characterized. In contrast to our earlier communication [Zalipsky, et al. (1999) Bioconjugate Chem. 10, 703], in the current study we used a more sterically hindered form of para-DTB urethane linkage containing a methyl group on the alpha-carbon to the disulfide moiety. The new reagent for covalent attachment of mPEG-DTB to amino groups of proteins was synthesized via a seven-step process. As a result of PEG conjugation, the lysozyme was shown to completely lose its bacterial cell wall-lysing activity. However, activity was almost fully restored upon cysteine-mediated cleavage of the PEG component. The conjugate decomposition process was monitored by RP-HPLC and by ion spray LC-MS, which showed the formation of the p-mercaptobenzyl urethane-lysozyme intermediate, and ultimately its conversion to the unmodified lysozyme as the sole protein component. Pharmacokinetic evaluation of (125)I-labeled cleavable and noncleavable PEG-lysozyme given intravenously in rats revealed similar clearance patterns; both cleared in a significantly slower manner compared to that of the native protein. However, subcutaneous administration of the same conjugates showed a significantly larger AUC of the cleavable conjugate, indicating that some cleavage of the DTB urethane may have occurred. Although the DTB-linked PEG-lysozyme exhibited almost the same plasma clearance as the noncleavable counterpart, hinting that methyl-DTB linkage might be stable in the bloodstream, SDS-PAGE examination of the conjugate incubated in plasma showed decomposition at least partially mediated by albumin. These results suggest the potential of PEG-DTB-proteins as macromolecular prodrugs capable of generating fully active native proteins under in vivo conditions.


Subject(s)
Benzene/chemistry , Muramidase/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Prodrugs/chemistry , Sulfhydryl Compounds/chemistry , Urethane/chemistry , Animals , Chromatography, High Pressure Liquid , Cross-Linking Reagents/chemistry , Male , Molecular Conformation , Muramidase/pharmacokinetics , Prodrugs/pharmacokinetics , Rats , Rats, Sprague-Dawley , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...