Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Chem Lab Med ; 61(11): 1917-1929, 2023 10 26.
Article in English | MEDLINE | ID: mdl-36788118

ABSTRACT

OBJECTIVES: To develop an isotope dilution-liquid chromatography-tandem mass spectrometry-(ID-LC-MS/MS)-based candidate reference measurement procedure (RMP) for quantification of methotrexate in human serum and plasma. METHODS: Quantitative nuclear magnetic resonance (qNMR) was used to determine absolute methotrexate content in the standard. Separation was achieved on a biphenyl reversed-phase analytical column with mobile phases based on water and acetonitrile, both containing 0.1% formic acid. Sample preparation included protein precipitation in combination with high sample dilution, and method validation according to current guidelines. The following were assessed: selectivity (using analyte-spiked samples, and relevant structural-related compounds and interferences); specificity and matrix effects (via post-column infusion and comparison of human matrix vs. neat samples); precision and accuracy (in a five-day validation analysis). RMP results were compared between two independent laboratories. Measurement uncertainty was evaluated according to current guidelines. RESULTS: The RMP separated methotrexate from potentially interfering compounds and enabled measurement over a calibration range of 7.200-5,700 ng/mL (0.01584-12.54 µmol/L), with no evidence of matrix effects. All pre-defined acceptance criteria were met; intermediate precision was ≤4.3% and repeatability 1.5-2.1% for all analyte concentrations. Bias was -3.0 to 2.1% for samples within the measuring range and 0.8-4.5% for diluted samples, independent of the sample matrix. RMP results equivalence was demonstrated between two independent laboratories (Pearson correlation coefficient 0.997). Expanded measurement uncertainty of target value-assigned samples was ≤3.4%. CONCLUSIONS: This ID-LC-MS/MS-based approach provides a candidate RMP for methotrexate quantification. Traceability of methotrexate standard and the LC-MS/MS platform were assured by qNMR assessment and extensive method validation.


Subject(s)
Methotrexate , Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Indicator Dilution Techniques , Isotopes , Reference Standards , Reproducibility of Results
2.
Mol Pharm ; 9(9): 2577-81, 2012 Sep 04.
Article in English | MEDLINE | ID: mdl-22808947

ABSTRACT

Although pharmaceutical excipients are supposed to be pharmacologically inactive, solubilizing agents like Cremophor EL have been shown to interact with cytochrome P450 (CYP)-dependent drug metabolism as well as efflux transporters such as P-glycoprotein (ABCB1) and multidrug resistance associated protein 2 (ABCC2). However, knowledge about their influence on the function of uptake transporters important in drug disposition is very limited. In this study we investigated the in vitro influence of polyethylene glycol 400 (PEG), hydroxypropyl-ß-cyclodextrin (HPCD), Solutol HS 15 (SOL), and Cremophor EL (CrEL) on the organic anion transporting polypeptides (OATP) 1A2, OATP2B1, OATP1B1, and OATP1B3 and the Na(+)/taurocholate cotransporting polypeptide (NTCP). In stably transfected human embryonic kidney cells we analyzed the competition of the excipients with the uptake of bromosulfophthalein in OATP1B1, OATP1B3, OATP2B1, and NTCP, estrone-3-sulfate (E(3)S) in OATP1A2, OATP1B1, and OATP2B1, estradiol-17ß-glucuronide in OATP1B3, and taurocholate (TA) in OATP1A2 and NTCP cells. SOL and CrEL were the most potent inhibitors of all transporters with the strongest effect on OATP1A2, OATP1B3, and OATP2B1 (IC(50) < 0.01%). HPCD also strongly inhibited all transport proteins but only for substrates containing a sterane-backbone. Finally, PEG seems to be a selective and potent modulator of OATP1A2 with IC(50) values of 0.05% (TA) and 0.14% (E(3)S). In conclusion, frequently used solubilizing agents were shown to interact substantially with intestinal and hepatic uptake transporters which should be considered in drug development. However, the clinical relevance of these findings needs to be evaluated in further in vivo studies.


Subject(s)
Excipients/pharmacology , Organic Anion Transporters/metabolism , 2-Hydroxypropyl-beta-cyclodextrin , Biological Transport/drug effects , Cell Line , Estradiol/analogs & derivatives , Estradiol/metabolism , Estrone/analogs & derivatives , Estrone/metabolism , Glycerol/analogs & derivatives , Glycerol/pharmacology , HEK293 Cells , Humans , Multidrug Resistance-Associated Protein 2 , Organic Anion Transporters, Sodium-Dependent/metabolism , Polyethylene Glycols/pharmacology , Stearic Acids/pharmacology , Sulfobromophthalein/metabolism , Symporters/metabolism , Taurocholic Acid/metabolism , beta-Cyclodextrins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...