Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 114(33): 8734-8739, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28760975

ABSTRACT

Nanostructured surfaces with quasi-random geometries can manipulate light over broadband wavelengths and wide ranges of angles. Optimization and realization of stochastic patterns have typically relied on serial, direct-write fabrication methods combined with real-space design. However, this approach is not suitable for customizable features or scalable nanomanufacturing. Moreover, trial-and-error processing cannot guarantee fabrication feasibility because processing-structure relations are not included in conventional designs. Here, we report wrinkle lithography integrated with concurrent design to produce quasi-random nanostructures in amorphous silicon at wafer scales that achieved over 160% light absorption enhancement from 800 to 1,200 nm. The quasi-periodicity of patterns, materials filling ratio, and feature depths could be independently controlled. We statistically represented the quasi-random patterns by Fourier spectral density functions (SDFs) that could bridge the processing-structure and structure-performance relations. Iterative search of the optimal structure via the SDF representation enabled concurrent design of nanostructures and processing.

2.
Nano Lett ; 16(11): 7121-7127, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27726404

ABSTRACT

This paper describes how delamination-free, hierarchical patterning of graphene can be achieved on prestrained thermoplastic sheets by surface wrinkling. Conformal contact between graphene and the substrate during strain relief was maintained by the presence of a soft skin layer, resulting in the uniform patterning of three-dimensional wrinkles over large areas (>cm2). The graphene wrinkle wavelength was tuned from the microscale to the nanoscale by controlling the thickness of the skin layer with 1 nm accuracy to realize a degree of control not possible by crumpling, which relies on delamination. Hierarchical patterning of the skin layers with varying thicknesses enabled multiscale graphene wrinkles with predetermined orientations to be formed. Significantly, hierarchical graphene wrinkles exhibited tunable mechanical stiffness at the nanoscale without compromising the macroscale electrical conductivity.

3.
ACS Appl Mater Interfaces ; 8(37): 24339-44, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27588822

ABSTRACT

Nanoscale wrinkling on the surfaces of polymer-based materials can be precisely controlled by depositing thin metal films of varying thicknesses. The deposition of these films fundamentally alters the mechanical properties of the substrates in ways that are not simply described using traditional continuum mechanical frameworks. In particular, we find, by modeling within a finite element analysis approach, that the very act of depositing a metal film may alter the Young's modulus of the polymer substrate to depths of up to a few hundred nanometers, creating a modified interfacial skin layer. We find that simulated wrinkle patterns reproduce the experimentally observed features only when the modulus of this surface layer varies by more than ∼500 nm and is described using a sigmoidal gradient multiplier.

4.
Nano Lett ; 15(8): 5624-9, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26218611

ABSTRACT

This paper describes how a memory-based, sequential wrinkling process can transform flat polystyrene sheets into multiscale, three-dimensional hierarchical textures. Multiple cycles of plasma-mediated skin growth followed by directional strain relief of the substrate resulted in hierarchical architectures with characteristic generational (G) features. Independent control over wrinkle wavelength and wrinkle orientation for each G was achieved by tuning plasma treatment time and strain-relief direction for each cycle. Lotus-type superhydrophobicity was demonstrated on three-dimensional G1-G2-G3 hierarchical wrinkles as well as tunable superhydrophilicity on these same substrates after oxygen plasma. This materials system provides a general approach for nanomanufacturing based on bottom-up sequential wrinkling that will benefit a diverse range of applications and especially those that require large area (>cm(2)), multiscale, three-dimensional patterns.

5.
Angew Chem Int Ed Engl ; 53(31): 8117-21, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-24984687

ABSTRACT

We describe herein how to control the orientation of polymer nanowrinkles and nanofolds with large amplitudes. Nanowrinkles were created by chemically treating thermoplastic polystyrene sheets to form a thin skin layer and then heating the substrate to relieve strain. By manipulating the strain globally and locally in the skin layer, we could tune whether wrinkles or folds formed, as well as the distances over which these structures could be produced. This unique materials system provided access to high strain regimes, which enabled mechanisms behind the spontaneous formation of complex structures to be explored.

6.
ACS Nano ; 7(12): 11035-42, 2013 Dec 23.
Article in English | MEDLINE | ID: mdl-24228849

ABSTRACT

This paper describes the properties of silver plasmonic crystals with quasiperiodic rotational symmetries. Compared to periodic plasmonic crystals, quasiperiodic moiré structures exhibited an increased number of surface plasmon polariton modes, especially at high angles of excitation. In addition, plasmonic band gaps were often formed at the intersections of these new modes. To identify the origin and predict the location of the band gaps, we developed a Bragg-based indexing system using the reciprocal lattice vectors of the moiré plasmonic crystals. We showed that even more complicated quasiperiodic geometries could also be described by this indexing model. We anticipate that these quasiperiodic lattices will be useful for applications that require the concentration and manipulation of light over a broadband spectrum.


Subject(s)
Crystallization , Nanotechnology/methods , Silver/chemistry , Algorithms , Automation , Biosensing Techniques , Chromium/chemistry , Equipment Design , Light , Microscopy, Electron, Scanning , Reproducibility of Results , Silicon/chemistry , Spectrophotometry , Surface Plasmon Resonance
7.
ACS Appl Mater Interfaces ; 5(13): 6438-42, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23758140

ABSTRACT

This paper describes a parallel method to generate polymer nanowrinkles over large areas with wavelengths that were continuously tuned down to 30 nm. Reactive ion etching using fluorinated gases was used to chemically treat thermoplastic polystyrene films, which resulted in a stiff skin layer. Upon heating, the treated thermoplastic, microscale, and nanoscale wrinkles were formed. We used variable-angle spectroscopic ellipsometry to characterize the thickness of the skin layer; this thickness could then be used to predict and control the nanowrinkle wavelength. Because the properties of these nanotextured polymer surfaces can be tuned over a large range of wrinkle wavelengths, they are promising for a broad range of applications, especially those that require large-area and uniform surface patterning.

8.
Nano Lett ; 12(10): 5275-80, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-22985257

ABSTRACT

We report a method based on density functional theory molecular dynamics that allows us to calculate the plasmonic properties of liquid metals and metal alloys from first principles with no a priori knowledge of the system. We show exceptional agreement between the simulated and measured optical constants of liquid Ga and the room temperature liquid In-Ga eutectic alloy (T(m) = 289 K). We then use this method to analyze the plasmonic properties of various alloy concentrations in the In-Ga system. The plasmonic performance of the In-Ga system decreases with increasing In concentration. However, the benefits of a room-temperature plasmonic liquid are likely to outweigh the minor reduction in plasmonic performance when moving from pure Ga to the eutectic composition. Our results show that density functional theory molecular dynamics can be used as a predictive tool for studying the optical properties of liquid metal systems amenable to plasmonics.

9.
Nano Lett ; 12(8): 4324-8, 2012 Aug 08.
Article in English | MEDLINE | ID: mdl-22823536

ABSTRACT

This paper reports the manipulation of surface plasmon polaritons (SPPs) in a liquid plasmonic metal by changing its physical phase. Dynamic properties were controlled by solid-to-liquid phase transitions in 1D Ga gratings that were fabricated using a simple molding process. Solid and liquid phases were found to exhibit different plasmonic properties, where light coupled to SPPs more efficiently in the liquid phase. We exploited the supercooling characteristics of Ga to access plasmonic properties associated with the liquid phase over a wider temperature range (up to 30 °C below the melting point of bulk Ga). Ab initio density functional theory-molecular dynamic calculations showed that the broadening of the solid-state electronic band structure was responsible for the superior plasmonic properties of the liquid metal.

SELECTION OF CITATIONS
SEARCH DETAIL
...