Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38723788

ABSTRACT

The extracellular matrix (ECM) is a dynamic and complex network of proteins and molecules that surrounds cells and tissues in the nervous system and orchestrates a myriad of biological functions. This review carefully examines the diverse interactions between cells and the ECM, as well as the transformative chemical and physical changes that the ECM undergoes during neural development, aging, and disease. These transformations play a pivotal role in shaping tissue morphogenesis and neural activity, thereby influencing the functionality of the central nervous system (CNS). In our comprehensive review, we describe the diverse behaviors of the CNS ECM in different physiological and pathological scenarios and explore the unique properties that make ECM-based strategies attractive for CNS repair and regeneration. Addressing the challenges of scalability, variability, and integration with host tissues, we review how advanced natural, synthetic, and combinatorial matrix approaches enhance biocompatibility, mechanical properties, and functional recovery. Overall, this review highlights the potential of decellularized ECM as a powerful tool for CNS modeling and regenerative purposes and sets the stage for future research in this exciting field. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.


Subject(s)
Extracellular Matrix , Regenerative Medicine , Humans , Extracellular Matrix/metabolism , Animals , Tissue Engineering , Central Nervous System , Nerve Regeneration
2.
Biomacromolecules ; 25(6): 3312-3324, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38728671

ABSTRACT

3D-printed hydrogel scaffolds biomimicking the extracellular matrix (ECM) are key in cartilage tissue engineering as they can enhance the chondrogenic differentiation of mesenchymal stem cells (MSCs) through the presence of active nanoparticles such as graphene oxide (GO). Here, biomimetic hydrogels were developed by cross-linking alginate, gelatin, and chondroitin sulfate biopolymers in the presence of GO as a bioactive filler, with excellent processability for developing bioactive 3D printed scaffolds and for the bioprinting process. A novel bioink based on our hydrogel with embedded human MSCs presented a cell survival rate near 100% after the 3D bioprinting process. The effects of processing and filler concentration on cell differentiation were further quantitatively evaluated. The nanocomposited hydrogels render high MSC proliferation and viability, exhibiting intrinsic chondroinductive capacity without any exogenous factor when used to print scaffolds or bioprint constructs. The bioactivity depended on the GO concentration, with the best performance at 0.1 mg mL-1. These results were explained by the rational combination of the three biopolymers, with GO nanoparticles having carboxylate and sulfate groups in their structures, therefore, biomimicking the highly negatively charged ECM of cartilage. The bioactivity of this biomaterial and its good processability for 3D printing scaffolds and 3D bioprinting techniques open up a new approach to developing novel biomimetic materials for cartilage repair.


Subject(s)
Alginates , Bioprinting , Cell Differentiation , Chondrogenesis , Chondroitin Sulfates , Gelatin , Hydrogels , Mesenchymal Stem Cells , Nanocomposites , Printing, Three-Dimensional , Tissue Scaffolds , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/pharmacology , Alginates/chemistry , Alginates/pharmacology , Gelatin/chemistry , Bioprinting/methods , Cell Differentiation/drug effects , Chondrogenesis/drug effects , Nanocomposites/chemistry , Tissue Scaffolds/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Tissue Engineering/methods , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Graphite/chemistry , Graphite/pharmacology , Cell Proliferation/drug effects , Cells, Cultured
3.
ACS Appl Bio Mater ; 6(9): 3889-3901, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37608579

ABSTRACT

The incorporation of exogenous lactate into cardiac tissues is a regenerative strategy that is rapidly gaining attention. In this work, two polymeric platforms were designed to achieve a sustained release of lactate, combining immediate and prolonged release profiles. Both platforms contained electrospun poly(lactic acid) (PLA) fibers and an alginate (Alg) hydrogel. In the first platform, named L/K(x)/Alg-PLA, lactate and proteinase K (x mg of enzyme per 1 g of PLA) were directly loaded into the Alg hydrogel, into which PLA fibers were assembled. In the second platform, L/Alg-K(x)/PLA, fibers were produced by electrospinning a proteinase K:PLA solution and, subsequently, assembled within the lactate-loaded hydrogel. After characterizing the chemical, morphological, and mechanical properties of the systems, as well as their cytotoxicity, the release profiles of the two platforms were determined considering different amounts of proteinase K (x = 5.2, 26, and 52 mg of proteinase K per 1 g of PLA), which is known to exhibit a broad cleavage activity. The profiles obtained using L/Alg-K(x)/PLA platforms with x = 26 and 52 were the closest to the criteria that must be met for cardiac tissue regeneration. Finally, the amount of lactate directly loaded in the Alg hydrogel for immediate release and the amount of protein in the electrospinning solution were adapted to achieve a constant lactate release of around 6 mM per day over 1 or 2 weeks. In the optimized bioplatform, in which 6 mM lactate was loaded in the hydrogel, the amount of fibers was increased by a factor of ×3, the amount of enzyme was adjusted to 40 mg per 1 g of PLA, and a daily lactate release of 5.9 ± 2.7 mM over a period of 11 days was achieved. Accordingly, the engineered device fully satisfied the characteristics and requirements for heart tissue regeneration.


Subject(s)
Hydrogels , Lactic Acid , Delayed-Action Preparations/pharmacology , Endopeptidase K , Polyesters , Alginates
4.
ACS Appl Bio Mater ; 6(7): 2860-2874, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37342003

ABSTRACT

The low endogenous regenerative capacity of the heart, added to the prevalence of cardiovascular diseases, triggered the advent of cardiac tissue engineering in the last decades. The myocardial niche plays a critical role in directing the function and fate of cardiomyocytes; therefore, engineering a biomimetic scaffold holds excellent promise. We produced an electroconductive cardiac patch of bacterial nanocellulose (BC) with polypyrrole nanoparticles (Ppy NPs) to mimic the natural myocardial microenvironment. BC offers a 3D interconnected fiber structure with high flexibility, which is ideal for hosting Ppy nanoparticles. BC-Ppy composites were produced by decorating the network of BC fibers (65 ± 12 nm) with conductive Ppy nanoparticles (83 ± 8 nm). Ppy NPs effectively augment the conductivity, surface roughness, and thickness of BC composites despite reducing scaffolds' transparency. BC-Ppy composites were flexible (up to 10 mM Ppy), maintained their intricate 3D extracellular matrix-like mesh structure in all Ppy concentrations tested, and displayed electrical conductivities in the range of native cardiac tissue. Furthermore, these materials exhibit tensile strength, surface roughness, and wettability values appropriate for their final use as cardiac patches. In vitro experiments with cardiac fibroblasts and H9c2 cells confirmed the exceptional biocompatibility of BC-Ppy composites. BC-Ppy scaffolds improved cell viability and attachment, promoting a desirable cardiomyoblast morphology. Biochemical analyses revealed that H9c2 cells showed different cardiomyocyte phenotypes and distinct levels of maturity depending on the amount of Ppy in the substrate used. Specifically, the employment of BC-Ppy composites drives partial H9c2 differentiation toward a cardiomyocyte-like phenotype. The scaffolds increase the expression of functional cardiac markers in H9c2 cells, indicative of a higher differentiation efficiency, which is not observed with plain BC. Our results highlight the remarkable potential use of BC-Ppy scaffolds as a cardiac patch in tissue regenerative therapies.


Subject(s)
Myocytes, Cardiac , Polymers , Polymers/chemistry , Pyrroles/chemistry , Cell Differentiation
5.
Sci Total Environ ; 889: 164283, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37209732

ABSTRACT

Highly permeable polyamide reverse osmosis (RO) membranes are desirable for reducing the energy burden and ensuring future water resources in arid and semiarid regions. One notable drawback of thin film composite (TFC) polyamide RO/NF membranes is the polyamide's sensitivity to degradation by free chlorine, the most used biocide in water purification trains. This investigation demonstrated a significant increase in the crosslinking-degree parameter by the m-phenylenediamine (MPD) chemical structure extending in the thin film nanocomposite (TFN) membrane without adding extra MPD monomers to enhance the chlorine resistance and performance. Membrane modification was carried out according to monomer ratio changes and Nanoparticle embedding into the PA layer approaches. A new class of TFN-RO membranes incorporating novel aromatic amine functionalized (AAF)-MWCNTs embedded into the polyamide (PA) layer was introduced. A purposeful strategy was carried out to use cyanuric chloride (2,4,6-trichloro-1,3,5-triazine) as an intermediate functional group in the AAF-MWCNTs. Thus, amidic nitrogen, connected to benzene rings and carbonyl groups, assembles a structure similar to the standard PA, consisting of MPD and trimesoyl chloride. The resulting AAF-MWCNTs were mixed in the aqueous phase during the interfacial polymerization to increase the susceptible positions to chlorine attack and improve the crosslinking degree in the PA network. The characterization and performance results of the membrane demonstrated an increase in ion selectivity and water flux, impressive stability of salt rejection after chlorine exposure, and improved antifouling performance. This purposeful modification resulted in overthrowing two tradeoffs; i) high crosslink density-water flux and ii) salt rejection-permeability. The modified membrane demonstrated ameliorative chlorine resistance relative to the pristine one, with twice the increase in crosslinking degree, more than four times the enhancement of the oxidation resistance, negligible reduction in the salt rejection (0.83 %), and only 5 L/m2.h flux loss following a rigorous static chlorine exposure of 500 ppm.h under acidic conditions. The excellent performance of new chlorine resistant TNF RO membranes fabricated via AAF-MWCNTs together with the facile membrane manufacturing process offered the possibility of postulating them in the desalination field, which could eventually help the current freshwater supply challenge.


Subject(s)
Chlorine , Nylons , Osmosis , Nylons/chemistry , Chlorides , Water , Sodium Chloride
6.
Int J Biol Macromol ; 238: 124117, 2023 May 31.
Article in English | MEDLINE | ID: mdl-36948340

ABSTRACT

This work proposes a microfibers-hydrogel assembled composite as delivery vehicle able to combine into a single system both burst and prolonged release of lactate. The prolonged release of lactate has been achieved by electrospinning a mixture of polylactic acid and proteinase K (26.0 mg of proteinase K and 0.99 g of PLA dissolved in 6 mL of 2:1 chloroform:acetone in the optimal case), which is a protease that catalyzes the degradation of polylactic acid into lactate. The degradation of microfibers into lactate reflects that proteinase K preserves its enzymatic activity even after the electrospinning process because of the mild operational conditions used. Besides, burst release is obtained from the lactate-loaded alginate hydrogel. The successful assembly between the lactate-loaded hydrogel and the polylactic acid/proteinase K fibers has been favored by applying a low-pressure (0.3 mbar at 300 W) oxygen plasma treatment, which transforms hydrophobic fibers into hydrophilic while the enzymatic activity is still maintained. The composite displays both fast (< 24 h) and sustained (> 10 days) lactate release, and allows the modulation of the release by adjusting either the amount of loaded lactate or the amount of active enzyme.


Subject(s)
Hydrogels , Polymers , Hydrogels/chemistry , Polymers/chemistry , Lactic Acid/chemistry , Endopeptidase K , Alginates/chemistry
7.
Cell Stem Cell ; 30(2): 219-238.e14, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36638801

ABSTRACT

Human induced pluripotent stem cell (hiPSC) technologies offer a unique resource for modeling neurological diseases. However, iPSC models are fraught with technical limitations including abnormal aggregation and inefficient maturation of differentiated neurons. These problems are in part due to the absence of synergistic cues of the native extracellular matrix (ECM). We report on the use of three artificial ECMs based on peptide amphiphile (PA) supramolecular nanofibers. All nanofibers display the laminin-derived IKVAV signal on their surface but differ in the nature of their non-bioactive domains. We find that nanofibers with greater intensity of internal supramolecular motion have enhanced bioactivity toward hiPSC-derived motor and cortical neurons. Proteomic, biochemical, and functional assays reveal that highly mobile PA scaffolds caused enhanced ß1-integrin pathway activation, reduced aggregation, increased arborization, and matured electrophysiological activity of neurons. Our work highlights the importance of designing biomimetic ECMs to study the development, function, and dysfunction of human neurons.


Subject(s)
Induced Pluripotent Stem Cells , Nanofibers , Humans , Proteomics , Neurons/metabolism , Extracellular Matrix/metabolism , Nanofibers/chemistry
8.
Biomacromolecules ; 24(10): 4408-4418, 2023 10 09.
Article in English | MEDLINE | ID: mdl-36597885

ABSTRACT

The involvement of the extracellular matrix (ECM) in tumor progression has motivated the development of biomaterials mimicking the tumor ECM to develop more predictive cancer models. Particularly, polypeptides based on elastin could be an interesting approach to mimic the ECM due to their tunable properties. Here, we demonstrated that elastin-like recombinamer (ELR) hydrogels can be suitable biomaterials to develop breast cancer models. This hydrogel was formed by two ELR polypeptides, one containing sequences biodegradable by matrix metalloproteinase and cyclooctyne and the other carrying arginylglycylaspartic acid and azide groups to allow cell adhesion, biodegradability, and suitable stiffness through "click-chemistry" cross-linking. Our findings show that breast cancer or nontumorigenic breast cells showed high viability and cell proliferation for up to 7 days. MCF7 and MCF10A formed spheroids whereas MDA-MB-231 formed cell networks, with the expression of ECM and high drug resistance in all cases, evidencing that ELR hydrogels are a promising biomaterial for breast cancer modeling.


Subject(s)
Breast Neoplasms , Hydrogels , Humans , Female , Hydrogels/pharmacology , Hydrogels/chemistry , Elastin/chemistry , Breast Neoplasms/drug therapy , Biocompatible Materials , Peptides , Extracellular Matrix
9.
J Neurointerv Surg ; 15(5): 496-501, 2023 May.
Article in English | MEDLINE | ID: mdl-35450927

ABSTRACT

BACKGROUND: In mechanical thrombectomy (MT), distal access catheters (DACs) are tracked through the vascular anatomy to reach the occlusion site. The inability of DACs to reach the occlusion site has been reported as a predictor of unsuccessful recanalization. This study aims to provide insight into how to navigate devices through the vascular anatomy with minimal track forces, since higher forces may imply more risk of vascular injuries. METHODS: We designed an experimental setup to monitor DAC track forces when navigating through an in vitro anatomical model. Experiments were recorded to study mechanical behaviors such as tension buildup against vessel walls, DAC buckling, and abrupt advancements. A multiple regression analysis was performed to predict track forces from the catheters' design specifications. RESULTS: DACs were successfully delivered to the target M1 in 60 of 63 in vitro experiments (95.2%). Compared to navigation with unsupported DAC, the concomitant coaxial use of a microcatheter/microguidewire and microcatheter/stent retriever anchoring significantly reduced the track forces by about 63% and 77%, respectively (p<0.01). The presence of the braid pattern in the reinforcement significantly reduced the track forces regardless of the technique used (p<0.05). Combined coil and braid reinforcement configuration, as compared with coil alone, and a thinner distal wall were predictors of lower track force when navigating with unsupported DAC. CONCLUSIONS: The use of microcatheter and stent retriever facilitate smooth navigation of DACs through the vascular tortuosity to reach the occlusion site, which in turn improves the reliability of tracking when positioning the DAC closer to the thrombus interface.


Subject(s)
Endovascular Procedures , Stroke , Thrombosis , Humans , Reproducibility of Results , Catheters , Thrombectomy/methods , Endovascular Procedures/methods , Stents , Treatment Outcome
10.
Acta Biomater ; 151: 264-277, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35981686

ABSTRACT

Most of the conventional in vitro models to test biomaterial-driven vascularization are too simplistic to recapitulate the complex interactions taking place in the actual cell microenvironment, which results in a poor prediction of the in vivo performance of the material. However, during the last decade, cell culture models based on microfluidic technology have allowed attaining unprecedented levels of tissue biomimicry. In this work, we propose a microfluidic-based 3D model to evaluate the effect of bioactive biomaterials capable of releasing signaling cues (such as ions or proteins) in the recruitment of endogenous endothelial progenitor cells, a key step in the vascularization process. The usability of the platform is demonstrated using experimentally-validated finite element models and migration and proliferation studies with rat endothelial progenitor cells (rEPCs) and bone marrow-derived rat mesenchymal stromal cells (BM-rMSCs). As a proof of concept of biomaterial evaluation, the response of rEPCs to an electrospun composite made of polylactic acid with calcium phosphates nanoparticles (PLA+CaP) was compared in a co-culture microenvironment with BM-rMSC to a regular PLA control. Our results show a significantly higher rEPCs migration and the upregulation of several pro-inflammatory and proangiogenic proteins in the case of the PLA+CaP. The effects of osteopontin (OPN) on the rEPCs migratory response were also studied using this platform, suggesting its important role in mediating their recruitment to a calcium-rich microenvironment. This new tool could be applied to screen the capacity of a variety of bioactive scaffolds to induce vascularization and accelerate the preclinical testing of biomaterials. STATEMENT OF SIGNIFICANCE: For many years researchers have used neovascularization models to evaluate bioactive biomaterials both in vitro, with low predictive results due to their poor biomimicry and minimal control over cell cues such as spatiotemporal biomolecule signaling, and in vivo models, presenting drawbacks such as being highly costly, time-consuming, poor human extrapolation, and ethically controversial. We describe a compact microphysiological platform designed for the evaluation of proangiogenesis in biomaterials through the quantification of the level of sprouting in a mimicked endothelium able to react to gradients of biomaterial-released signals in a fibrin-based extracellular matrix. This model is a useful tool to perform preclinical trustworthy studies in tissue regeneration and to better understand the different elements involved in the complex process of vascularization.


Subject(s)
Endothelial Progenitor Cells , Animals , Biocompatible Materials/metabolism , Biocompatible Materials/pharmacology , Calcium/metabolism , Calcium Phosphates/pharmacology , Fibrin/pharmacology , Humans , Microfluidics , Neovascularization, Physiologic , Osteopontin/metabolism , Polyesters/pharmacology , Rats , Tissue Engineering , Tissue Scaffolds
11.
Biomater Adv ; 139: 213035, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35907761

ABSTRACT

In situ tissue engineering strategies are a promising approach to activate the endogenous regenerative potential of the cardiac tissue helping the heart to heal itself after an injury. However, the current use of complex reprogramming vectors for the activation of reparative pathways challenges the easy translation of these therapies into the clinic. Here, we evaluated the response of mouse neonatal and human induced pluripotent stem cell-derived cardiomyocytes to the presence of exogenous lactate, thus mimicking the metabolic environment of the fetal heart. An increase in cardiomyocyte cell cycle activity was observed in the presence of lactate, as determined through Ki67 and Aurora-B kinase. Gene expression and RNA-sequencing data revealed that cardiomyocytes incubated with lactate showed upregulation of BMP10, LIN28 or TCIM in tandem with downregulation of GRIK1 or DGKK among others. Lactate also demonstrated a capability to modulate the production of inflammatory cytokines on cardiac fibroblasts, reducing the production of Fas, Fraktalkine or IL-12p40, while stimulating IL-13 and SDF1a. In addition, the generation of a lactate-rich environment improved ex vivo neonatal heart culture, by affecting the contractile activity and sarcomeric structures and inhibiting epicardial cell spreading. Our results also suggested a common link between the effect of lactate and the activation of hypoxia signaling pathways. These findings support a novel use of lactate in cardiac tissue engineering, modulating the metabolic environment of the heart and thus paving the way to the development of lactate-releasing platforms for in situ cardiac regeneration.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Animals , Bone Morphogenetic Proteins/metabolism , Cell Cycle/genetics , Cell Cycle/physiology , Cell Differentiation/genetics , Cell Differentiation/physiology , Gene Expression , Humans , Induced Pluripotent Stem Cells/metabolism , Lactic Acid/metabolism , Mice , Myocytes, Cardiac/metabolism
12.
ACS Appl Mater Interfaces ; 14(26): 29467-29482, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35735173

ABSTRACT

The tumor extracellular matrix (ECM) plays a vital role in tumor progression and drug resistance. Previous studies have shown that breast tissue-derived matrices could be an important biomaterial to recreate the complexity of the tumor ECM. We have developed a method for decellularizing and delipidating a porcine breast tissue (TDM) compatible with hydrogel formation. The addition of gelatin methacrylamide and alginate allows this TDM to be bioprinted by itself with good printability, shape fidelity, and cytocompatibility. Furthermore, this bioink has been tuned to more closely recreate the breast tumor by incorporating collagen type I (Col1). Breast cancer cells (BCCs) proliferate in both TDM bioinks forming cell clusters and spheroids. The addition of Col1 improves the printability of the bioink as well as increases BCC proliferation and reduces doxorubicin sensitivity due to a downregulation of HSP90. TDM bioinks also allow a precise three-dimensional printing of scaffolds containing BCCs and stromal cells and could be used to fabricate artificial tumors. Taken together, we have proven that these novel bioinks are good candidates for biofabricating breast cancer models.


Subject(s)
Bioprinting , Neoplasms , Animals , Bioprinting/methods , Extracellular Matrix , Printing, Three-Dimensional , Swine , Tissue Engineering/methods , Tissue Scaffolds
13.
Gels ; 8(1)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35049575

ABSTRACT

With the currently available materials and technologies it is difficult to mimic the mechanical properties of soft living tissues. Additionally, another significant problem is the lack of information about the mechanical properties of these tissues. Alternatively, the use of phantoms offers a promising solution to simulate biological bodies. For this reason, to advance in the state-of-the-art a wide range of organs (e.g., liver, heart, kidney as well as brain) and hydrogels (e.g., agarose, polyvinyl alcohol -PVA-, Phytagel -PHY- and methacrylate gelatine -GelMA-) were tested regarding their mechanical properties. For that, viscoelastic behavior, hardness, as well as a non-linear elastic mechanical response were measured. It was seen that there was a significant difference among the results for the different mentioned soft tissues. Some of them appear to be more elastic than viscous as well as being softer or harder. With all this information in mind, a correlation between the mechanical properties of the organs and the different materials was performed. The next conclusions were drawn: (1) to mimic the liver, the best material is 1% wt agarose; (2) to mimic the heart, the best material is 2% wt agarose; (3) to mimic the kidney, the best material is 4% wt GelMA; and (4) to mimic the brain, the best materials are 4% wt GelMA and 1% wt agarose. Neither PVA nor PHY was selected to mimic any of the studied tissues.

14.
J Neurointerv Surg ; 14(1)2022 Jan.
Article in English | MEDLINE | ID: mdl-33858973

ABSTRACT

BACKGROUND: A direct aspiration first pass thrombectomy (ADAPT) is a fast-growing technique for which a broad catalog of catheters that provide a wide range of aspiration forces can be used. We aimed to characterize different catheters' aspiration performance on stiff clots in an in vitro vascular model. We hypothesized that labeled catheter inner diameter (labeled-ID) is not the only parameter that affects the aspiration force (asp-F) and that thrombus-catheter tip interaction and distensibility also play a major role. METHODS: We designed an experimental setup consisting of a 3D-printed carotid artery immersed in a water deposit. We measured asp-F and distensibility of catheter tips when performing ADAPT on a stiff clot analog larger than catheter labeled-ID. Correlations between asp-F, catheter ID, and tip distensibility were statistically assessed. RESULTS: Experimental asp-F and catheter labeled-ID were correlated (r=0.9601; P<0.01). The relative difference between experimental and theoretical asp-F (obtained by the product of the tip's section area by the vacuum pressure) correlated with tip's distensibility (r=0.9050; P<0.01), evidencing that ADAPT performance is highly influenced by catheter tip shape-adaptability to the clot and that the effective ID (eff-ID) may differ from the labeled-ID specified by manufacturers. Eff-ID showed the highest correlation with experimental asp-F (r=0.9944; P<0.01), confirming that eff-ID rather than labeled-ID should be considered to better estimate the device efficiency. CONCLUSIONS: Catheter tip distensibility can induce a significant impact on ADAPT performance when retrieving a stiff clot larger than the device ID. Our findings might contribute to optimizing thrombectomy strategies and the design of novel aspiration catheters.


Subject(s)
Stroke , Thrombosis , Catheters , Humans , Thrombectomy , Treatment Outcome
15.
ACS Appl Mater Interfaces ; 13(37): 44108-44123, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34494824

ABSTRACT

Most morphogenetic and pathological processes are driven by cells responding to the surrounding matrix, such as its composition, architecture, and mechanical properties. Despite increasing evidence for the role of extracellular matrix (ECM) in tissue and disease development, many in vitro substitutes still fail to effectively mimic the native microenvironment. We established a novel method to produce macroscale (>1 cm) mesenchymal cell-derived matrices (CDMs) aimed to mimic the fibrotic tumor microenvironment surrounding epithelial cancer cells. CDMs are produced by human adipose mesenchymal stem cells cultured in sacrificial 3D scaffold templates of fibronectin-coated poly-lactic acid microcarriers (MCs) in the presence of macromolecular crowders. We showed that decellularized CDMs closely mimic the fibrillar protein composition, architecture, and mechanical properties of human fibrotic ECM from cancer masses. CDMs had highly reproducible composition made of collagen types I and III and fibronectin ECM with tunable mechanical properties. Moreover, decellularized and MC-free CDMs were successfully repopulated with cancer cells throughout their 3D structure, and following chemotherapeutic treatment, cancer cells showed greater doxorubicin resistance compared to 3D culture in collagen hydrogels. Collectively, these results support the use of CDMs as a reproducible and tunable tool for developing 3D in vitro cancer models.


Subject(s)
Cell Culture Techniques, Three Dimensional/methods , Decellularized Extracellular Matrix/chemistry , Mesenchymal Stem Cells/chemistry , Tissue Scaffolds/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/drug effects , Humans , Models, Biological , Proof of Concept Study , Tumor Microenvironment/physiology
16.
Biofabrication ; 13(3)2021 06 01.
Article in English | MEDLINE | ID: mdl-33962409

ABSTRACT

The creation of cardiac tissue models for preclinical testing is still a non-solved problem in drug discovery, due to the limitations related to thein vitroreplication of cardiac tissue complexity. Among these limitations, the difficulty of mimicking the functional properties of the myocardium due to the immaturity of the used cells hampers the obtention of reliable results that could be translated into human patients.In vivomodels are the current gold standard to test new treatments, although it is widely acknowledged that the used animals are unable to fully recapitulate human physiology, which often leads to failures during clinical trials. In the present work, we present a microfluidic platform that aims to provide a range of signaling cues to immature cardiac cells to drive them towards an adult phenotype. The device combines topographical electrospun nanofibers with electrical stimulation in a microfabricated system. We validated our platform using a co-culture of neonatal mouse cardiomyocytes and cardiac fibroblasts, showing that it allows us to control the degree of anisotropy of the cardiac tissue inside the microdevice in a cost-effective way. Moreover, a 3D computational model of the electrical field was created and validated to demonstrate that our platform is able to closely match the distribution obtained with the gold standard (planar electrode technology) using inexpensive rod-shaped biocompatible stainless-steel electrodes. The functionality of the electrical stimulation was shown to induce a higher expression of the tight junction protein Cx-43, as well as the upregulation of several key genes involved in conductive and structural cardiac properties. These results validate our platform as a powerful tool for the tissue engineering community due to its low cost, high imaging compatibility, versatility, and high-throughput configuration capabilities.


Subject(s)
Electric Stimulation , Animals , Anisotropy , Humans , Mice , Myocytes, Cardiac , Nanofibers , Tissue Engineering
17.
Front Bioeng Biotechnol ; 9: 627805, 2021.
Article in English | MEDLINE | ID: mdl-33829009

ABSTRACT

(Following spinal cord injury, olfactory ensheathing cell (OEC) transplantation is a promising therapeutic approach in promoting functional improvement. Some studies report that the migratory properties of OECs are compromised by inhibitory molecules and potentiated by chemical concentration differences. Here we compare the attachment, morphology, and directionality of an OEC-derived cell line, TEG3 cells, seeded on functionalized nanoscale meshes of Poly(l/dl-lactic acid; PLA) nanofibers. The size of the nanofibers has a strong effect on TEG3 cell adhesion and migration, with the PLA nanofibers having a 950 nm diameter being the ones that show the best results. TEG3 cells are capable of adopting a bipolar morphology on 950 nm fiber surfaces, as well as a highly dynamic behavior in migratory terms. Finally, we observe that functionalized nanofibers, with a chemical concentration increment of SDF-1α/CXCL12, strongly enhance the migratory characteristics of TEG3 cells over inhibitory substrates.

18.
Adv Sci (Weinh) ; 8(4): 2003129, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33643799

ABSTRACT

The establishment of tumor microenvironment using biomimetic in vitro models that recapitulate key tumor hallmarks including the tumor supporting extracellular matrix (ECM) is in high demand for accelerating the discovery and preclinical validation of more effective anticancer therapeutics. To date, ECM-mimetic hydrogels have been widely explored for 3D in vitro disease modeling owing to their bioactive properties that can be further adapted to the biochemical and biophysical properties of native tumors. Gathering on this momentum, herein the current landscape of intrinsically bioactive protein and peptide hydrogels that have been employed for 3D tumor modeling are discussed. Initially, the importance of recreating such microenvironment and the main considerations for generating ECM-mimetic 3D hydrogel in vitro tumor models are showcased. A comprehensive discussion focusing protein, peptide, or hybrid ECM-mimetic platforms employed for modeling cancer cells/stroma cross-talk and for the preclinical evaluation of candidate anticancer therapies is also provided. Further development of tumor-tunable, proteinaceous or peptide 3D microtesting platforms with microenvironment-specific biophysical and biomolecular cues will contribute to better mimic the in vivo scenario, and improve the predictability of preclinical screening of generalized or personalized therapeutics.

19.
Biomedicines ; 9(3)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33669131

ABSTRACT

Tissue engineering and regenerative medicine approaches use biomaterials in combination with cells to regenerate lost functions of tissues and organs to prevent organ transplantation. However, most of the current strategies fail in mimicking the tissue's extracellular matrix properties. In order to mimic native tissue conditions, we developed cell-derived matrix (CDM) microtissues (MT). Our methodology uses poly-lactic acid (PLA) and Cultispher® S microcarriers' (MCs') as scaffold templates, which are seeded with rat bone marrow mesenchymal stem cells (rBM-MSCs). The scaffold template allows cells to generate an extracellular matrix, which is then extracted for downstream use. The newly formed CDM provides cells with a complex physical (MT architecture) and biochemical (deposited ECM proteins) environment, also showing spontaneous angiogenic potential. Our results suggest that MTs generated from the combination of these two MCs (mixed MTs) are excellent candidates for tissue vascularization. Overall, this study provides a methodology for in-house fabrication of microtissues with angiogenic potential for downstream use in various tissue regenerative strategies.

20.
Mater Sci Eng C Mater Biol Appl ; 121: 111854, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33579487

ABSTRACT

Thymidine kinase expressing human adipose mesenchymal stem cells (TK-hAMSCs) in combination with ganciclovir (GCV) are an effective platform for antitumor bystander therapy in mice models. However, this strategy requires multiple TK-hAMSCs administrations and a substantial number of cells. Therefore, for clinical translation, it is necessary to find a biocompatible scaffold providing TK-hAMSCs retention in the implantation site against their rapid wash-out. We have developed a microtissue (MT) composed by TKhAMSCs and a scaffold made of polylactic acid microparticles and cell-derived extracellular matrix deposited by hAMSCs. The efficacy of these MTs as vehicles for TK-hAMSCs/GCV bystander therapy was evaluated in a rodent model of human prostate cancer. Subcutaneously implanted MTs were integrated in the surrounding tissue, allowing neovascularization and maintenance of TK-hAMSCs viability. Furthermore, MTs implanted beside tumors allowed TK-hAMSCs migration towards tumor cells and, after GCV administration, inhibited tumor growth. These results indicate that TK-hAMSCs-MTs are promising cell reservoirs for clinical use of therapeutic MSCs in bystander therapies.


Subject(s)
Mesenchymal Stem Cells , Neoplasms , Animals , Bystander Effect , Cell Line, Tumor , Ganciclovir/pharmacology , Mice , Neoplasms/therapy , Simplexvirus , Thymidine Kinase
SELECTION OF CITATIONS
SEARCH DETAIL
...