Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Mol Mutagen ; 58(3): 146-161, 2017 04.
Article in English | MEDLINE | ID: mdl-28370322

ABSTRACT

We previously described a multiplexed in vitro genotoxicity assay based on flow cytometric analysis of detergent-liberated nuclei that are simultaneously stained with propidium iodide and labeled with fluorescent antibodies against p53, γH2AX, and phospho-histone H3. Inclusion of a known number of microspheres provides absolute nuclei counts. The work described herein was undertaken to evaluate the interlaboratory transferability of this assay, commercially known as MultiFlow® DNA Damage Kit-p53, γH2AX, Phospho-Histone H3. For these experiments, seven laboratories studied reference chemicals from a group of 84 representing clastogens, aneugens, and nongenotoxicants. TK6 cells were exposed to chemicals in 96-well plates over a range of concentrations for 24 hr. At 4 and 24 hr, cell aliquots were added to the MultiFlow reagent mix and following a brief incubation period flow cytometric analysis occurred, in most cases directly from a 96-well plate via a robotic walk-away data acquisition system. Multiplexed response data were evaluated using two analysis approaches, one based on global evaluation factors (i.e., cutoff values derived from all interlaboratory data), and a second based on multinomial logistic regression that considers multiple biomarkers simultaneously. Both data analysis strategies were devised to categorize chemicals as predominately exhibiting a clastogenic, aneugenic, or nongenotoxic mode of action (MoA). Based on the aggregate 231 experiments that were performed, assay sensitivity, specificity, and concordance in relation to a priori MoA grouping were ≥ 92%. These results are encouraging as they suggest that two distinct data analysis strategies can rapidly and reliably predict new chemicals' predominant genotoxic MoA based on data from an efficient and transferable multiplexed in vitro assay. Environ. Mol. Mutagen. 58:146-161, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
DNA Damage , Flow Cytometry/methods , Laboratories , Mutagenicity Tests/methods , Mutagens/toxicity , Aneugens/toxicity , Animals , Cell Culture Techniques , Histones/genetics , Humans , Laboratories/standards , Logistic Models , Phosphorylation , Pilot Projects , Reproducibility of Results , Robotics , Sensitivity and Specificity , Tumor Suppressor Protein p53/genetics
2.
Environ Mol Mutagen ; 55(6): 492-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24599777

ABSTRACT

Ethyl methanesulfonate (EMS) was evaluated as part of the validation effort for the rat Pig-a mutation assay and compared with other well-established in vivo genotoxicity endpoints. Male Sprague-Dawley (SD) rats were given a daily dose of 0, 6.25, 12.5, 25, 50, or 100 mg/kg/day EMS for 28 days, and evaluated for a variety of genotoxicity endpoints in peripheral blood, liver, and colon. Blood was sampled pre-dose (Day 1) and at various time points up to Day 105. Pig-a mutant frequencies were determined in total red blood cells (RBCs) and reticulocytes (RETs) as RBC(CD59-) and RET(CD59-) frequencies. The first statistically significant increases in mutant frequencies were seen in RETs on Day 15 and in RBCs on Day 29 with the maximum RET(CD59-) on Day 29 and of RBC(CD59-) on Day 55. The lowest dose producing a statistically significant increase of RET(CD59-) was 12.5 mg/kg on Day 55 and 25 mg/kg for RBC(CD59-) on Day 55. EMS also induced significant increases in % micronucleated RETs (MN-RETs) in peripheral blood on Days 3, 15, and 28. No statistically significant increases in micronuclei were seen in liver or colon. Results from the in vivo Comet assay on Day 29 showed generally weak increases in DNA damage in all tissues evaluated with little evidence for accumulation of damage seen over time. The results with EMS indicate that the assessment of RBC(CD59-) and/or RET(CD59-) in the Pig-a assay could be a useful and sensitive endpoint for a repeat dose protocol and complements other genotoxicity endpoints.


Subject(s)
Comet Assay/methods , Ethyl Methanesulfonate/toxicity , Membrane Proteins/genetics , Micronucleus Tests/methods , Animals , Colon/cytology , Colon/drug effects , DNA Damage/drug effects , Dose-Response Relationship, Drug , Endpoint Determination , Erythrocytes/drug effects , Liver/cytology , Liver/drug effects , Male , Membrane Proteins/drug effects , Mutation Rate , Rats , Rats, Sprague-Dawley , Reticulocytes/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...