Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 201: 111475, 2021 10.
Article in English | MEDLINE | ID: mdl-34166663

ABSTRACT

Ozone (O3) is an oxidative air pollutant that affects plant growth. Moringa oleifera is a tree species distributed in the tropical and subtropical regions. This species presents high morphological plasticity, which increases its ability to tolerate stressful conditions, but with no O3 risk assessment calculated so far. The present study assessed the O3 risk to different M. oleifera ecotypes using exposure-based index (AOT40) or flux-based index (PODy - where y is a threshold of O3 uptake). PODy considers the O3 uptake through the stomata and the consequence of environmental climate conditions on stomatal conductance (gsto); thus, it is efficient in assessing O3 risk. Five M. oleifera ecotypes were subjected to ambient (Amb.); middle (Mid. X1.5), and High (x2.0) O3 concentrations for 77 days in a free-air controlled exposure facility (FACE). Leaf biomass (LB) was evaluated, and the biomass loss was projected assuming a clean atmosphere (10 ppb as 24 h O3 average). The gsto parameterization was calculated using the Jarvis-type multiplicative algorithm considering several climate factors, i.e., light intensity, air temperature, air vapor pressure deficit, and AOT40. Ozone exposure harmed the LB of all ecotypes. The high gsto (~559 mmol H2O m-2 s-1) can be considered the reason for the species' O3 sensitivity. M. oleifera is adapted to hot climate conditions, and gsto was restricted with air temperature (Tmin) below ~ 9 °C. As expected, the PODy index performed better than the AOT40 for estimating the O3 effect on biomass losses. We recommend a y threshold of 4 nmol m-2 s-1 to incorporate O3 effects on M. oleifera LB. To not exceed a 4% reduction of LB for any M. oleifera genotype, we recommend the critical levels of 1.1 mmol m-2 POD4.


Subject(s)
Air Pollutants , Moringa oleifera , Ozone , Air Pollutants/analysis , Ecotype , Ozone/analysis , Ozone/toxicity , Plant Leaves , Trees
2.
Sci Total Environ ; 769: 145080, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33736256

ABSTRACT

Eugenia uniflora L. is an important fruit tree native to tropical South America that adapts to different habitats, thanks to its metabolic diversity and ability to adjust the leaf antioxidant metabolism. We hypothesized that this metabolic diversity would also enable E. uniflora to avoid oxidative damage and tolerate the enhanced ozone (O3) concentrations that have been registered in the (sub)tropics. We investigated whether carbohydrates, polyphenols and antioxidants are altered and markers of oxidative damage (ROS accumulation, alterations in leaf gas exchange, growth and biomass production) are detected in plants exposed to two levels of O3 (ambient air and twice elevated ozone level in a O3-FACE system for 75 days). Phytotoxic O3 dose above a threshold of 0 nmol m-2 s-1 (POD0) and accumulated exposure above 40 ppb (AOT40) were 3.6 mmol m-2 and 14.898 ppb h at ambient, and 4.7 mmol m-2 and 43.881 ppb h at elevated O3. Twenty-seven primary metabolites and 16 phenolic compounds were detected in the leaves. Contrary to the proposed hypothesis that tropical broadleaf trees are relatively O3 tolerant, we concluded that E. uniflora plants are sensitive to elevated O3 concentrations. Experimental POD0 values were lower than the critical levels for visible foliar O3, because of low stomatal conductance. In spite of this low stomatal O3 uptake, we found classic O3 injury, e.g. reduction in carbohydrates and fatty acids concentrations; non-significant changes in the polyphenol profile; inefficient antioxidant responses; increased contents of ROS and indicators of lipid peroxidation; reductions in stomatal conductance, net photosynthesis, root/shoot ratio and height growth. However, we also found some compensation mechanisms, e.g. increased leaf concentration of polyols for protecting the membranes, and increased leaf number for compensating the decline of photosynthetic rate. These results help filling the knowledge gap about tropical tree responses to O3.


Subject(s)
Air Pollutants , Eugenia , Ozone , Air Pollutants/analysis , Ozone/analysis , Photosynthesis , Plant Leaves/chemistry , South America , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...