Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 300: 122699, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31901515

ABSTRACT

The impact of four different growth conditions on the cell disruption efficiency of Neochloris oleoabundans was investigated. A mechanical and biological cell disruption methods were evaluated separately and combined. It has been established that microalgae grown in marine water under nitrogen deprivation were the most resistant against cell disruption methods and released the lowest amount of proteins. The release of lipids, however, followed the "hindered molecule diffusion phenomenon" because it did not follow the same release pattern as proteins. The enzymatic treatment was efficient enough to release the majority of the proteins without combining it with high-pressure homogenization. Regarding energy input, Neochloris oleoabundans grown in marine water under nitrogen deprivation required the highest energy input to release proteins (Ep = 13.76 kWh.kg-1) and to break the cells by high-pressure homogenization (Ex - HPH = 1.14 kWh.kg-1) or by the combination of enzymes and High-pressure homogenization (Ex - ENZ = 2.79 kWh.kg-1).


Subject(s)
Chlorophyta , Microalgae , Biomass , Lipids , Nitrogen
2.
Bioresour Technol ; 239: 204-210, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28521230

ABSTRACT

Several cell disruption methods were tested on Nannochloropsis gaditana, to evaluate their efficiency in terms of cell disintegration, energy input and release of soluble proteins. High-pressure homogenization (HPH) and bead milling were the most efficient with >95% cell disintegration, ±50% (w/w) release of total proteins and low energy input (<0.5kWh.kg-1biomass). Enzymatic treatment required low energy input (<0.34kWh.kg-1biomass), but it only released ±35% protein (w/w). Pulsed Electric Field (PEF) was neither energy-efficient (10.44kWh.kg-1biomass) nor successful for protein release (only 10% proteins w/w) and cell disintegration. The release of proteins after applying HPH and bead milling always required less intensive operating conditions for cell disruption. The energy cost per unit of released protein ranged from 0.15-0.25 €.kgProtein-1 in case of HPH, and up to 2-20 €.kgProtein-1 in case of PEF.


Subject(s)
Plant Proteins , Stramenopiles , Biomass , Cell Wall , Microalgae , Water
3.
Bioresour Technol ; 225: 151-158, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27888732

ABSTRACT

A mild biorefinery process was investigated on the microalga Nannochloropsis gaditana, to obtain an enriched fraction of water soluble proteins free from chlorophyll. After harvesting, a 100g.L-1 solution of cells was first subjected to cell disruption by either high-pressure homogenization (HPH) or enzymatic treatment (ENZ). HPH resulted in a larger release of proteins (49%) in the aqueous phase compared to the Alcalase incubation (35%). In both cases, an ultrafiltration/diafiltration (UF/DF) was then performed on the supernatant obtained from cell disruption by testing different membrane cut-off (1000kDa, 500kDa and 300kDa). After optimising the process conditions, the combination of ENZ→UF/DF ended in a larger overall yield of water soluble proteins (24.8%) in the permeate compared to the combination of HPH→UF/DF (17.4%). A gel polarization model was implemented to assess the maximum achievable concentration factor during ultrafiltration and the mass transfer coefficient related to the theoretical permeation flux rate.


Subject(s)
Microalgae/chemistry , Proteins/isolation & purification , Stramenopiles/chemistry , Ultrafiltration/methods , Chlorophyll/chemistry , Membranes, Artificial , Polysaccharides/chemistry , Pressure , Solubility , Subtilisins/chemistry , Ultrafiltration/instrumentation , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...