Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 4(3): 1371-7, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22332637

ABSTRACT

Nanocrystalline WO(3) thin films were produced by sputter-deposition by varying the ratio of argon to oxygen in the reactive gas mixture during deposition. The surface chemistry, physical characteristics, and optical properties of nanocrystalline WO(3) films were evaluated using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray reflectivity (XRR), and spectrophotometric measurements. The effect of ultramicrostructure was significant on the optical properties of WO(3) films. The XPS analyses indicate the formation of stoichiometric WO(3) with tungsten existing in fully oxidized valence state (W(6+)). However, WO(3) films grown at high oxygen concentration (>60%) in the sputtering gas mixture were over stoichiometric with excess oxygen. XRR simulations based on isotropic WO(3) film-SiO(2) interface-Si substrate modeling indicate that the density of WO(3) films is sensitive to the oxygen content in the sputtering gas. The spectral transmission of the films increased with increasing oxygen. The band gap of these films increases from 2.78 to 3.25 eV with increasing oxygen. A direct correlation between the film density and band gap in nanocrystalline WO(3) films is established on the basis of the observed results.

2.
J Phys Chem C Nanomater Interfaces ; 116(26): 14108-14114, 2012 Jul 05.
Article in English | MEDLINE | ID: mdl-23573300

ABSTRACT

The oxidation state switching of cerium in cerium oxide nanoparticles is studied in detail. The influence of synthesis medium, aging time and local environment on the oxidation state switching, between +3 and + 4, is analyzed by tracking the absorption edge using UV-Visible spectroscopy. It is observed that by tuning the local environment, the chemistry of the nanoparticles could be altered. These time dependent, environmentally induced changes likely contribute to inconsistencies in the literature regarding quantum-confinement effects for ceria nanoparticles. The results in this article indicate that there is a need to carry out comprehensive analysis of nanoparticles while considering the influence of synthesis and processing conditions, aging time and local environment.

3.
Ultramicroscopy ; 108(1): 43-51, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17448600

ABSTRACT

There are many circumstances in science where the process of measuring the properties of a system alters the system. An imaging process can exert an inadvertent effect on the object being observed. Consequently, what we observe does not necessarily represent what had been present before the observation. Normally, this effect can be ignored if the consequence of such a change is believed not to be significant. The expansion of nanostructured materials has made high-resolution transmission electron microscopy one of the indispensable tools for probing the characteristics of nanomaterials. Modification of nanoparticles by the electron beam during their imaging has been widely noticed and this is generally believed to be due to electron beam-induced heating effect, defect formation in the particles, charging of the particle, or excitation of surrounding gases. However, an explicit experimental identification of which process dominates is often very hard to establish. We report the thickening of native oxide layer on iron nanoparticle under electron beam irradiation. Based on atomic level imaging, electron diffraction, and computer simulation, we have direct evidence that the protecting oxide layer formed on Fe nanoparticle at room temperature in air or oxygen continues to grow during an electron beam bombardment in the vacuum system typical of most TEM systems. Typically, the oxide layer increases from approximately 3 to approximately 6 nm following approximately 1h electron beam exposure typically with an electron flux of 7 x 10(5)nm(-2)s(-1) and an vacuum of approximately 3 x 10(-5)Pa. Partial illumination of a nanoparticle and observation of the shell thickening conclusively demonstrates that many of the mechanisms postulated to explain such processes are not occurring to a significant extent. The observed growth is not related to the electron beam-induced heating of the nanoparticle, or residual oxygen ionization, or establishment of an electrical field, rather it is related to electron beam-facilitated mass transport across the oxide layer (a defect-related process). The growth follows a parabolic growth law.

4.
J Phys Condens Matter ; 19(26): 266203, 2007 Jul 04.
Article in English | MEDLINE | ID: mdl-21694080

ABSTRACT

We report the results of a detailed investigation of sol-gel-synthesized nanoscale Zn(1-x)Co(x)O powders processed at 350 °C with 0≤x≤0.12 to understand how the structural, morphological, optical and magnetic properties of ZnO are modified by Co doping, in addition to searching for the theoretically predicted ferromagnetism. With x increasing to 0.03, both lattice parameters a and c of the hexagonal ZnO decreased, suggesting substitutional doping of Co at the tetrahedral Zn(2+) sites. For x>0.03, these trends reversed and the lattice showed a gradual expansion as x approached 0.12, probably due to additional interstitial incorporation of Co. Raman spectroscopy measurements showed a rapid change in the ZnO peak positions for x>0.03, suggesting significant disorder and changes in the ZnO structure, in support of additional interstitial Co doping possibility. Combined x-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance spectroscopy, photoluminescence spectroscopy and diffuse reflectance spectroscopy showed clear evidence for tetrahedrally coordinated high-spin Co(2+) ions occupying the lattice sites of ZnO host system, which became saturated for x>0.03. Magnetic measurements showed a paramagnetic behaviour in Zn(1-x)Co(x)O with increasing antiferromagnetic interactions as x increased to 0.10. Surprisingly, a weak ferromagnetic behaviour was observed for the sample with x = 0.12 with a characteristic hysteresis loop showing a coercivity H(c)∼350 Oe, 25% remanence M(r), a low saturation magnetization M(s)∼0.04 emu g(-1) and with a Curie temperature T(c)∼540 K. The XPS data collected from Zn(1-x)Co(x)O samples showed a gradual increase in the oxygen concentration, changing the oxygen-deficient undoped ZnO to an excess oxygen state for x = 0.12. This indicates that such high Co concentrations and appropriate oxygen stoichiometry may be needed to achieve adequate ferromagnetic exchange coupling between the incorporated Co(2+) ions.

SELECTION OF CITATIONS
SEARCH DETAIL
...