Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 13(11): e10670, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37920773

ABSTRACT

In summer 2011, Tropical storms Lee and Irene caused an estimated 90% decline of the submersed aquatic plant Vallisneria americana Michx. (Hydrocharitaceae) in the Hudson River of New York (USA). To understand the genetic impact of such large-scale demographic losses, we compared diversity at 10 microsatellite loci in 135 samples collected from five sites just before the storms with 239 shoots collected from nine sites 4 years after. Although 80% of beds sampled in 2011 lacked V. americana in 2015, we found similar genotypic and genetic diversity and effective population sizes in pre-storm versus post-storm sites. These similarities suggest that despite local extirpations concentrated at the upstream end of the sampling area, V. americana was regionally resistant to genetic losses. Similar geographically based structure among sites in both sampling periods suggested that cryptic local refugia at previously occupied sites facilitated re-expansion after the storms. However, this apparent resistance to disturbance may lead to a false sense of security. Low effective population sizes and high clonality in both time periods suggest that V. americana beds were already small and had high frequency of asexual reproduction before the storms. Dispersal was not sufficient to recolonize more isolated sites that had been extirpated. Chronic low diversity and reliance on asexual reproduction for persistence can be risky when more frequent and intense storms are paired with ongoing anthropogenic stressors. Monitoring genetic diversity along with extent and abundance of V. americana will give a more complete picture of long-term potential for resilience.

2.
New Phytol ; 217(1): 16-25, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29076547

ABSTRACT

Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even 'extend' to influence community structure and ecosystem level processes. Progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Thus, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking. Here we introduce the Sphagnome Project, which incorporates genomics into a long-running history of Sphagnum research that has documented unparalleled contributions to peatland ecology, carbon sequestration, biogeochemistry, microbiome research, niche construction, and ecosystem engineering. The Sphagnome Project encompasses a genus-level sequencing effort that represents a new type of model system driven not only by genetic tractability, but by ecologically relevant questions and hypotheses.


Subject(s)
Genome, Plant/genetics , Genomics , Models, Biological , Sphagnopsida/genetics , Adaptation, Physiological , Biological Evolution , Ecology , Phylogeny , Sequence Analysis, DNA , Sphagnopsida/cytology , Sphagnopsida/physiology
3.
PLoS One ; 11(10): e0164875, 2016.
Article in English | MEDLINE | ID: mdl-27788209

ABSTRACT

Tidal habitats host a diversity of species and provide hydrological services such as shoreline protection and nutrient attenuation. Accretion of sediment and biomass enables tidal marshes and swamps to grow vertically, providing a degree of resilience to rising sea levels. Even if accelerating sea level rise overcomes this vertical resilience, tidal habitats have the potential to migrate inland as they continue to occupy land that falls within the new tide range elevations. The existence of developed land inland of tidal habitats, however, may prevent this migration as efforts are often made to dyke and protect developments. To test the importance of inland migration to maintaining tidal habitat abundance under a range of potential rates of sea level rise, we developed a spatially explicit elevation tracking and habitat switching model, dubbed the Marsh Accretion and Inundation Model (MAIM), which incorporates elevation-dependent net land surface elevation gain functions. We applied the model to the metropolitan Washington, DC region, finding that the abundance of small National Park Service units and other public open space along the tidal Potomac River system provides a refuge to which tidal habitats may retreat to maintain total habitat area even under moderate sea level rise scenarios (0.7 m and 1.1 m rise by 2100). Under a severe sea level rise scenario associated with ice sheet collapse (1.7 m by 2100) habitat area is maintained only if no development is protected from rising water. If all existing development is protected, then 5%, 10%, and 40% of the total tidal habitat area is lost by 2100 for the three sea level rise scenarios tested.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Global Warming , Biomass , Models, Theoretical , Natural Resources , Oceans and Seas , Tidal Waves
4.
Ecol Appl ; 26(3): 846-60, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27411255

ABSTRACT

The maintenance of marsh platform elevation under conditions of sea level rise is dependent on mineral sediment supply to marsh surfaces and conversion of above- and belowground plant biomass to soil organic material. These physical and biological processes interact within the tidal zone, resulting in elevation-dependent processes contributing to marsh accretion. Here, we explore spatial pattern in a variable related to aboveground biomass, plant litter, to reveal its role in the maintenance of marsh surfaces. Plant litter persisting through the dormant season represents the more recalcitrant portion of plant biomass, and as such has an extended period of influence on ecosystem processes. We conducted a field and remote sensing analysis of plant litter height, aboveground biomass, vertical cover, and stem density (collectively termed plant litter structure) at a tidal freshwater marsh located within the Potomac River estuary, USA. LiDAR and field observations show that plant litter structure becomes more prominent with increasing elevation. Spatial patterns in litter structure exhibit stability from year to year and correlate with patterns in soil organic matter content, revealed by measuring the loss on ignition of surface sediments. The amount of mineral material embedded within plant litter decreases with increasing elevation, representing an important tradeoff with litter structure. Therefore, at low elevations where litter structure is short and sparse, the role of plant litter is to capture sediment; at high elevations where litter structure is tall and dense, aboveground litter contributes organic matter to soil development. This organic matter contribution has the potential to eclipse that of belowground biomass as the root:shoot ratio of dominant species at high elevations is low compared to that of dominant species at low elevations. Because of these tradeoffs in mineral and organic matter incorporation into soil across elevation gradients, the rate of marsh surface elevation change is remarkably consistent across elevation. Because of the role of plant litter in marsh ecosystem processes, monitoring and assessment of these dynamic geomorphic marsh landscapes might be streamlined through the measurement of plant litter structure, either via LiDAR technologies or field observation.


Subject(s)
Fresh Water , Plants/classification , Wetlands , Conservation of Natural Resources , Estuaries , Time Factors , Virginia
5.
ScientificWorldJournal ; 2014: 643694, 2014.
Article in English | MEDLINE | ID: mdl-24672347

ABSTRACT

Differences in body sizes may create a trade-off between foraging efficiency (foraging gains/costs) and access to resources. Such a trade-off provides a potential mechanism for ecologically similar species to coexist on one resource. We explored this hypothesis for tundra (Cygnus columbianus) and trumpeter swans (Cygnus buccinator), a federally protected species, feeding solely on sago pondweed (Stuckenia pectinata) tubers during fall staging and wintering in northern Utah. Foraging efficiency was higher for tundra swans because this species experienced lower foraging and metabolic costs relative to foraging gains; however, trumpeter swans (a) had longer necks and therefore had access to exclusive resources buried deep in wetland sediments and (b) were more aggressive and could therefore displace tundra swans from lucrative foraging locations. We conclude that body size differentiation is an important feature of coexistence among ecologically similar species feeding on one resource. In situations where resources are limiting and competition for resources is strong, conservation managers will need to consider the trade-off between foraging efficiency and access to resources to ensure ecologically similar species can coexist on a shared resource.


Subject(s)
Birds/anatomy & histology , Animals , Birds/physiology , Conservation of Natural Resources , Ecosystem , Feeding Behavior , Utah
6.
Ecology ; 90(7): 1802-9, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19694129

ABSTRACT

Landscape fragmentation and exotic species invasions are two modern-day forces that have strong and largely irreversible effects on native diversity worldwide. The spatial arrangement of habitat fragments is critical in affecting movement of individuals through a landscape, but little is known about how invasive species respond to landscape configuration relative to native species. This information is crucial for managing the global threat of invasive species spread. Using network analysis and partial Mantel tests to control for covarying environmental conditions, we show that forest plant communities in a fragmented landscape have spatial structure that is best captured by a network representation of landscape connectivity. This spatial structure is less pronounced in invasive species and exotic species dispersed by animals. Our research suggests that invasive species can spread more easily in fragmented landscapes than native species, which may make communities more homogeneous over time.


Subject(s)
Ecosystem , Models, Biological , Trees/physiology , Conservation of Natural Resources , Demography , Maryland
7.
Mol Ecol Resour ; 9(5): 1427-9, 2009 Sep.
Article in English | MEDLINE | ID: mdl-21564928

ABSTRACT

Vallisneria americana Michaux (wild celery) is currently a target of submersed aquatic vegetation restoration efforts in the Chesapeake Bay watershed. To aid these efforts, we have developed 11 polymorphic microsatellite markers to assess the distribution and degree of genetic diversity in both restored and naturally occurring populations in the Chesapeake Bay. In 59 individuals from two populations, we detected two to 10 total alleles per locus. Observed heterozygosity ranged from 0.125 to 0.929, and two loci exhibited significant deviations from Hardy-Weinberg equilibrium in at least one of the populations assayed.

8.
Environ Manage ; 39(6): 843-52, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17453281

ABSTRACT

The restoration of degraded systems is essential for maintaining the provision of valuable ecosystem services, including the maintenance of aesthetic values. However, restoration projects often fail to reach desired goals for a variety of ecologic, financial, and social reasons. Feasibility studies that evaluate whether a restoration effort should even be attempted can enhance restoration success by highlighting potential pitfalls and gaps in knowledge before the design phase of a restoration. Feasibility studies also can bring stakeholders together before a restoration project is designed to discuss potential disagreements. For these reasons, a feasibility study was conducted to evaluate the efficacy of restoring a tidal freshwater marsh in the Potomac River near Alexandria, Virginia. The study focused on science rather than engineering questions, and thus differed in approach from other feasibility studies that are mostly engineering driven. The authors report the framework they used to conduct a feasibility study to inform other potential restoration projects with similar goals. The seven steps of the framework encompass (1) initiation of a feasibility study, (2) compilation of existing data, (3) collection of current site information, (4) examination of case studies, (5) synthesis of information in a handbook, (6) meeting with selected stakeholders, and (7) evaluation of meeting outcomes. By conducting a feasibility study using the seven-step framework, the authors set the stage for conducting future compliance studies and enhancing the chance of a successful restoration.


Subject(s)
Conservation of Natural Resources/methods , Ecology , Ecosystem , Feasibility Studies , Water Pollution/prevention & control , Animals , Community Participation , Conservation of Natural Resources/legislation & jurisprudence , Decision Making , Humans , Rivers/chemistry , Virginia , Water Pollution/legislation & jurisprudence
9.
Ecol Appl ; 16(5): 1808-20, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17069373

ABSTRACT

Reliably predicting the consequences of short- or long-term changes in the environment is important as anthropogenic pressures are increasingly stressing the world's ecosystems. One approach is to examine the manner in which biota respond to changes in the environment ("response traits") and how biota, in turn, affect ecosystem processes ("effect traits"). I compared the response and effect traits of four submersed aquatic macrophytes to understand how water level management may affect wetland plant populations and ecosystem processes. I measured resource properties (nutrients in sediment and water), non-resource properties (pH, alkalinity, sediment temperature, oxygen production), and biotic properties (periphyton biomass) in replicated outdoor monocultures of Stuckenia pectinata, Potamogeton nodosus, P. crispus, and Zannichellia palustris. After seven weeks, three of eight replicates of each species treatment were subjected to a temporary water draw-down that desiccated aboveground plant parts. The four species differed in their effects on ecosystem properties associated with nutrient uptake and photosynthetic activity. Shoot growth rate was negatively correlated with light transmittance to the sediment surface whereas root growth rate and root:shoot ratio were correlated with a species' ability to deplete nutrients in sediment interstitial water. Occupation of space in the water column was correlated with water alkalinity and pH and with sediment temperature. Root growth rate was related simultaneously to species effects on sediment nutrient dynamics and recovery of ecosystem properties after water draw-down. This suggests that this morphological trait may be used to predict the effects of environmental change on ecosystem functioning within the context of water level management. Expanding these analyses to more species, different environmental stressors, and across aquatic and terrestrial ecosystems should enhance predictions of the complex effects of global environmental change on ecosystem functioning.


Subject(s)
Ecosystem , Plants/metabolism , Water , Time Factors
10.
Science ; 306(5699): 1177-80, 2004 Nov 12.
Article in English | MEDLINE | ID: mdl-15539601

ABSTRACT

Rapid changes in biodiversity are occurring globally, yet the ecological impacts of diversity loss are poorly understood. Here we use data from marine invertebrate communities to parameterize models that predict how extinctions will affect sediment bioturbation, a process vital to the persistence of aquatic communities. We show that species extinction is generally expected to reduce bioturbation, but the magnitude of reduction depends on how the functional traits of individual species covary with their risk of extinction. As a result, the particular cause of extinction and the order in which species are lost ultimately govern the ecosystem-level consequences of biodiversity loss.


Subject(s)
Biodiversity , Ecosystem , Geologic Sediments , Invertebrates , Animals , Biomass , Body Size , Computer Simulation , Echinodermata , Invertebrates/anatomy & histology , Invertebrates/physiology , Ireland , Marine Biology , Models, Biological , Population Density , Population Dynamics , Probability , Seawater , Statistics as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...