Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Neurol Neuroimmunol Neuroinflamm ; 4(1): e309, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28053999

ABSTRACT

OBJECTIVE: To comparatively assess the B-cell composition in blood and CSF of patients with pediatric-onset multiple sclerosis (pedMS) and adult-onset multiple sclerosis (adMS). METHODS: In this cross-sectional study, we obtained blood and CSF samples from 25 patients with pedMS (8-18 years) and 40 patients with adMS (23-65 years) and blood specimens from 66 controls (1-55 years). By using multicolor flow cytometry, we identified naive, transitional, isotype class-switched memory, nonswitched memory, and double-negative memory B-cell subsets as well as plasmablasts (PB) and terminally differentiated plasma cells (PC). Flow cytometric data were compared to concentrations of B-cell-specific cytokines in serum and CSF as determined by ELISA. RESULTS: Frequencies of circulating naive B-cells decreased with higher age in controls but not in patients with multiple sclerosis (MS). B-cell patterns in CSF differed between pedMS and adMS with an acute relapse: in pedMS-derived CSF samples, high frequencies of nonswitched memory B cells and PB were present, whereas class-switched memory B cells and PC dominated in the CSF of patients with adMS. In pedMS, PB were also elevated in the periphery. Accumulation of PB in the CSF correlated with high intrathecal CXCL-13 levels and augmented intrathecal synthesis of immunoglobulin G and immunoglobulin M. CONCLUSIONS: We demonstrate distinct changes in intrathecal B-cell homeostasis in patients with pedMS during active disease, which differ from those in adults by an expansion of plasmablasts in blood and CSF and similarly occur in prototypic autoantibody-driven autoimmune disorders. This emphasizes the particular importance of activated B-lymphocyte subsets for disease progression in the earliest clinical stages of MS.

2.
Soft Matter ; 12(27): 5995-6004, 2016 Jul 06.
Article in English | MEDLINE | ID: mdl-27337699

ABSTRACT

ß-Lactoglobulin (BLG) adsorption layers at air-water interfaces were studied in situ with vibrational sum-frequency generation (SFG), tensiometry, surface dilatational rheology and ellipsometry as a function of bulk Ca(2+) concentration. The relation between the interfacial molecular structure of adsorbed BLG and the interactions with the supporting electrolyte is additionally addressed on higher length scales along the foam hierarchy - from the ubiquitous air-water interface through thin foam films to macroscopic foam. For concentrations <1 mM, a strong decrease in SFG intensity from O-H stretching bands and a slight increase in layer thickness and surface pressure are observed. A further increase in Ca(2+) concentrations above 1 mM causes an apparent change in the polarity of aromatic C-H stretching vibrations from interfacial BLG which we associate to a charge reversal at the interface. Foam film measurements show formation of common black films at Ca(2+) concentrations above 1 mM due to considerable decrease of the stabilizing electrostatic disjoining pressure. These observations also correlate with a minimum in macroscopic foam stability. For concentrations >30 mM Ca(2+), micrographs of foam films show clear signatures of aggregates which tend to increase the stability of foam films. Here, the interfacial layers have a higher surface dilatational elasticity. In fact, macroscopic foams formed from BLG dilutions with high Ca(2+) concentrations where aggregates and interfacial layers with higher elasticity are found, showed the highest stability with much smaller bubble sizes.

3.
J Phys Chem B ; 119(17): 5505-17, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25825918

ABSTRACT

We report a combined experimental and computational study of the whey protein ß-lactoglobulin (BLG) in different electrolyte solutions. Vibrational sum-frequency generation (SFG) and ellipsometry were used to investigate the molecular structure of BLG modified air-water interfaces as a function of LiCl, NaCl, and KCl concentrations. Molecular dynamics (MD) simulations and thermodynamic integration provided details of the ion pairing of protein surface residues with alkali-metal cations. Our results at pH 6.2 indicate that BLG at the air-water interface forms mono- and bilayers preferably at low and high ionic strength, respectively. Results from SFG spectroscopy and ellipsometry are consistent with intimate ion pairing of alkali-metal cations with aspartate and glutamate carboxylates, which is shown to be more effective for smaller cations (Li(+) and Na(+)). MD simulations show not only carboxylate-alkali-metal ion pairs but also ion multiplets with the alkali-metal ion in a bridging position between two or more carboxylates. Consequently, alkali-metal cations can bridge carboxylates not only within a monomer but also between monomers, thus providing an important dimerization mechanism between hydrophilic surface patches.


Subject(s)
Carboxylic Acids/chemistry , Lactoglobulins/chemistry , Metals, Alkali/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Protein Multimerization/drug effects , Adsorption , Molecular Dynamics Simulation , Protein Structure, Quaternary , Thermodynamics
4.
J Membr Biol ; 248(2): 285-94, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25567359

ABSTRACT

Pannexin1 (Panx1) is an integral membrane protein and known to form multifunctional hexameric channels. Recently, Panx1 was identified to be responsible for the release of ATP and UTP from apoptotic cells after site-specific proteolysis by caspases 3/7. Cleavage at the carboxy-terminal (CT) position aa 376-379 irreversibly opens human Panx1 channels and leads to the release of the respective nucleotides resulting in recruitment of macrophages and in subsequent activation of the immunologic response. The fact that cleavage of the CT at this particular residues terminates in a permanently open channel raised the issue of functional relevance of the CT of Panx1 for regulating channel properties. To analyze the impact of the CT on channel gating, we generated 14 truncated versions of rat Panx1 cleaved at different positions in the C-terminus. This allowed elaboration of the influence of defined residues on channel formation, voltage-dependent gating, execution of cell mortality, and susceptibility to the Panx1 inhibitor carbenoxolone. We demonstrate that expression of Panx1 proteins, which were truncated to lengths between 370 and 393 residues, induces differential effects after expression in Xenopus laevis oocytes as well as in Neuro2A cells with strongest impact downstream the caspase 3/7 cleavage site.


Subject(s)
Connexins/genetics , Connexins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Interaction Domains and Motifs , Animals , Cell Death/genetics , Cell Line , Cell Survival/genetics , Connexins/chemistry , Gene Expression , Membrane Potentials , Nerve Tissue Proteins/chemistry , Oocytes/metabolism , Protein Interaction Domains and Motifs/genetics , Rats , Transfection , Xenopus
5.
J Phys Chem B ; 118(15): 4098-105, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24678897

ABSTRACT

Mixtures of ß-lactoglobulin (BLG) and sodium dodecyl sulfate (SDS) were studied at pH 3.8 and 6.7 under equilibrium conditions. At these pH conditions, BLG carries either a positive or a negative net charge, respectively, which enables tunable electrostatic interactions between anionic SDS surfactants and BLG proteins. For pH 3.8, vibrational sum-frequency generation (SFG) and ellipsometry indicate strong BLG-SDS complex formation at air-water interfaces that is caused by attractive electrostatic interactions. The latter complexes are already formed in the bulk solution which was confirmed by a thermodynamic study of BLG-SDS mixtures using isothermal titration calorimetry (ITC). For acidic conditions we determine from our ITC data an exothermal binding enthalpy of -40 kJ mol(-1). Increasing SDS/BLG molar ratios above 10 leads to a surface excess of SDS and thus to a charge reversal from a positive net charge with BLG as the dominating surface adsorbed species to a negatively charged layer with SDS as the dominating surface species. The latter is evidenced by a pronounced minimum in SFG intensities that is also accompanied by a phase change of O-H stretching bands due to a reorientation of H2O within the local electric field. This phase change which occurs at SDS/BLG molar ratio between 1 and 10 causes a polarity change in SFG intensities from BLG aromatic C-H stretching vibrations. Conclusions from SFG spectra are corroborated by ellipsometry which shows a dramatic increase in layer thicknesses at molar ratios where a charge reversal occurs. The formation of interfacial multilayers comprising SDS-BLG complexes is, thus, caused by cancellation of electrostatic interactions which leads to agglomeration at the interface. In contrast to pH 3.8, behavior of BLG-SDS mixtures at pH 6.7 is different due to repulsive electrostatic interactions between SDS and BLG which lead to a significantly reduced binding enthalpy of -17 kJ mol(-1). Finally, it has to be mentioned that SFG spectra show a coexistence of BLG and SDS molecules at the interface for BLG-SDS molar ratios > 2.


Subject(s)
Lactoglobulins/chemistry , Sodium Dodecyl Sulfate/chemistry , Water/chemistry , Air , Hydrogen-Ion Concentration , Surface Tension
6.
Langmuir ; 29(37): 11646-55, 2013 Sep 17.
Article in English | MEDLINE | ID: mdl-23961700

ABSTRACT

Macroscopic properties of aqueous ß-lactoglobulin (BLG) foams and the molecular properties of BLG modified air-water interfaces as their major structural element were investigated with a unique combination of foam rheology measurements and interfacial sensitive methods such as sum-frequency generation and interfacial dilatational rheology. The molecular structure and protein-protein interactions at the air-water interface can be changed substantially with the solution pH and result in major changes in interfacial dilational and foam rheology. At a pH near the interfacial isoelectric point BLG molecules carry zero net charge and disordered multilayers with the highest interfacial dilatational elasticity are formed at the air-water interface. Increasing or decreasing the pH with respect to the isoelectric point leads to the formation of a BLG monolayer with repulsive electrostatic interactions among the adsorbed molecules which decrease the interfacial dilational elasticity. The latter molecular information does explain the behavior of BLG foams in our rheological studies, where in fact the highest apparent yield stresses and storage moduli are established with foams from electrolyte solutions with a pH close to the isoelectric point of BLG. At this pH the gas bubbles of the foam are stabilized by BLG multilayers with attractive intermolecular interactions at the ubiquitous air-water interfaces, while BLG layers with repulsive interactions decrease the apparent yield stress and storage moduli as stabilization of gas bubbles with a monolayer of BLG is less effective.


Subject(s)
Lactoglobulins/chemistry , Air , Hydrogen-Ion Concentration , Molecular Structure , Rheology , Surface Properties , Water/chemistry
7.
Neurology ; 81(9): 784-92, 2013 Aug 27.
Article in English | MEDLINE | ID: mdl-23911752

ABSTRACT

OBJECTIVE: To assess pediatric patients with multiple sclerosis (MS) for early signs of homeostatic and functional abnormalities in conventional (Tcon) and regulatory T cells (Treg). METHODS: We studied the composition of the peripheral T-cell compartment and Treg function in a cross-sectional study with 30 pediatric MS (pMS) patients by multicolor flow cytometry and proliferation assays. Data were compared to those obtained from adult patients (n = 26) and age-matched control donors (n = 67). RESULTS: Proportions of naive T cells were 10%-20% higher in children than in adults, reflecting the age-related decline. pMS patients, however, had clearly lower numbers of naive T cells, among them recent thymic emigrants (RTE), whereas percentages of memory T cells were increased. In the Treg compartment, reduced RTE numbers coincided with markedly dampened suppressive capacities of total Treg. These homeostatic changes in circulating T cells precisely paralleled the pattern seen in adult MS. As in adults, treatment with immunomodulatory drugs attenuated these alterations. CONCLUSION: The homeostatic changes detected in the T-cell compartment in pMS are similar to those in adult-onset disease. With ratios between naive and memory T-cell subsets matching those of 20- to 30-years-older controls, signs of early thymic involution are already found in pMS, suggesting that an intrinsic compromise in thymic-dependent T-cell neogenesis might contribute to MS pathogenesis.


Subject(s)
Homeostasis/immunology , Immunologic Memory/immunology , Multiple Sclerosis/pathology , T-Lymphocyte Subsets/cytology , T-Lymphocytes/immunology , Adult , Age Factors , Child , Female , Flow Cytometry/methods , Humans , Immunologic Factors/immunology , Male , Multiple Sclerosis/immunology , T-Lymphocyte Subsets/immunology , Young Adult
8.
Langmuir ; 28(20): 7780-7, 2012 May 22.
Article in English | MEDLINE | ID: mdl-22530646

ABSTRACT

The surface chemistry of ions, water molecules, and proteins as well as their ability to form stable networks in foams can influence and control macroscopic properties such as taste and texture of dairy products considerably. Despite the significant relevance of protein adsorption at liquid interfaces, a molecular level understanding on the arrangement of proteins at interfaces and their interactions has been elusive. Therefore, we have addressed the adsorption of the model protein bovine serum albumin (BSA) at the air-water interface with vibrational sum-frequency generation (SFG) and ellipsometry. SFG provides specific information on the composition and average orientation of molecules at interfaces, while complementary information on the thickness of the adsorbed layer can be obtained with ellipsometry. Adsorption of charged BSA proteins at the water surface leads to an electrified interface, pH dependent charging, and electric field-induced polar ordering of interfacial H(2)O and BSA. Varying the bulk pH of protein solutions changes the intensities of the protein related vibrational bands substantially, while dramatic changes in vibrational bands of interfacial H(2)O are simultaneously observed. These observations have allowed us to determine the isoelectric point of BSA directly at the electrolyte-air interface for the first time. BSA covered air-water interfaces with a pH near the isoelectric point form an amorphous network of possibly agglomerated BSA proteins. Finally, we provide a direct correlation of the molecular structure of BSA interfaces with foam stability and new information on the link between microscopic properties of BSA at water surfaces and macroscopic properties such as the stability of protein foams.


Subject(s)
Air , Electricity , Serum Albumin, Bovine/chemistry , Water/chemistry , Adsorption , Animals , Cattle , Hydrogen-Ion Concentration , Spectrum Analysis
9.
J Membr Biol ; 244(1): 21-33, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21938521

ABSTRACT

Pannexins form high-conductance ion channels in the membranes of many vertebrate cells. Functionally, they have been associated with multiple functional pathways like the propagation of calcium waves, ATP release, responses to ischemic conditions and apoptosis. In contrast to accumulating details which uncovered their functions, the molecular mechanisms for pannexin channel regulation and activation are hardly understood. To further elucidate regulatory mechanisms, we substituted cysteine residues, expected key elements for channel function, in extracellular and transmembrane regions of Pannexin 1 (Panx1). Most apparently, substitution of the transmembrane cysteine C40 resulted in constitutively open channels with profoundly increased activity. Hence, Xenopus laevis oocytes injected with corresponding cRNA showed strongly impaired viability, anomalous dye uptake and greatly increased whole-cell conductivity. All changes induced by C40 substitution were significantly reduced by the Panx1 channel blocker carbenoxolone, indicating that channel activity of the mutated Panx1 had been affected. In contrast, no changes occurred after substitution of the two other transmembrane cysteines, C215 and C227, in terms of channel conductivity. Finally, substitution of any of the four extracellular cysteines resulted in complete loss of channel function in both X. laevis oocytes and transfected N2A cells. From this, we conclude that cysteine residues of Panx1 reveal differential functional profiles for channel activation and drug sensitivity.


Subject(s)
Connexins/genetics , Connexins/metabolism , Cysteine/genetics , Ion Channels/genetics , Ion Channels/metabolism , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Amino Acid Substitution , Animals , Cell Line , Cell Membrane/metabolism , Coloring Agents/metabolism , Membrane Potentials/genetics , Oocytes/metabolism , Oxidation-Reduction , Protein Transport , Xenopus laevis
10.
Antimicrob Agents Chemother ; 54(8): 3493-7, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20498315

ABSTRACT

A total of 489 clinical isolates of Pseudomonas aeruginosa was investigated for metallo-beta-lactamase (MBL) production. Molecular analysis detected a blaVIM-1 gene in the chromosome of one isolate and a blaVIM-2 gene carried on the plasmid in seven isolates. Moreover, we showed that an initial screening by combined susceptibility testing of imipenem and ceftazidime followed by a confirmatory EDTA combination disk test represents a valid alternative to the molecular investigation of MBL genes, making MBL detection possible in routine diagnostic laboratories.


Subject(s)
Hospitals, University/statistics & numerical data , Pseudomonas Infections/epidemiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Ceftazidime/pharmacology , Drug Resistance, Bacterial , Germany/epidemiology , Humans , Imipenem/pharmacology , Microbial Sensitivity Tests , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...