Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
JDS Commun ; 5(1): 23-27, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38223377

ABSTRACT

The objective of this research was to assess variation in postpartum hay intake when offered alongside total mixed ration (TMR) as free choice, and identify factors related to the hay intake. Twenty multiparous cows were fed a closeup TMR (21.5% starch, 39.1% neutral detergent fiber [NDF] on a dry matter [DM] basis). After calving, cows were offered free choice timothy hay (61.6% NDF, 9.6% crude protein) in addition to a fresh cow TMR (26.8% starch, 33.0% NDF) for the first 5 d postpartum. Cows were fed individually with separate mangers for TMR and hay, each offered ad libitum. Prepartum DM intake (DMI) was recorded, and baseline blood samples were collected after calving, but before the first postpartum feeding. Free choice hay intake ranged from 0 to 4.7 kg/d (DM basis) or 0 to 55.2% (% of total DMI). Cows that consumed more hay (% of total DMI) from d 1 through 5 postpartum had lower DMI 2 d before calving (r = -0.63), and greater baseline concentrations of plasma ß-hydroxybutyrate (r = 0.60) and serum haptoglobin (r = 0.68). Additionally, hay intake (% of total DMI) from d 1 through 5 postpartum tended to be positively related to baseline plasma fatty acid concentration (r = 0.41). These findings suggest that cows with lower intake before calving and cows with greater ketone production and inflammation at calving may consume more hay, when offered separate from TMR.

2.
J Dairy Sci ; 107(2): 813-828, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37709044

ABSTRACT

The objective of the present study was to evaluate the effects of offering free-choice hay to cows during the first 5 d immediately after calving on feed intake, milk yield, plasma metabolites, serum inflammatory markers, rumination, gut permeability, and colon gene expression. It was hypothesized that cows offered free-choice hay would have lower gut permeability, lower inflammation, and higher milk production, compared with cows not offered hay. Thirty-two multiparous cows were fed a closeup total mixed ration (TMR; 21.5% starch, 32.1% forage neutral detergent fiber [NDF] on a dry matter basis) until calving. In the postpartum period, all cows were fed a fresh cow TMR (26.8% starch and 23.4% forage NDF) from calving until 21 DIM, and were assigned randomly to receive 1 of 2 treatments as follows: (1) free-choice timothy hay (61.6% NDF; 9.6% crude protein), offered outside of the TMR in a separate manger, for the first 5 d postpartum (FCH; n = 20), or 2) no free-choice hay (NH; n = 12). The FCH cows tended to have lower serum haptoglobin concentration on d 3, compared with NH (0.95 vs. 1.52 mg/mL). Within the FCH group, cows with greater hay intake had a smaller increase in serum amyloid A from d 1 to 3 after calving (r = 0.37), and tended to have a smaller increase in serum haptoglobin concentration (r = 0.36). Cows in the FCH group had a lower ratio of starch intake (kg) to forage NDF intake (kg) on d 1 and 2, compared with NH (0.91 vs. 1.14 ± 0.03), and cows that had a lower starch:forage NDF ratio tended to have a smaller increase in serum haptoglobin concentration from d 1 to 3 after calving (r = 0.32). Cows in the FCH group had lower TMR dry matter intake (DMI; 15.0 vs. 17.1 ± 0.93 kg/d) and lower total DMI (TMR + hay DMI; 15.9 vs. 17.1 ± 0.87 kg/d), from d 1 to 5 when free-choice hay was offered, compared with NH. However, the hay treatment did not affect plasma energy metabolite concentration, gut permeability, colon gene expression, milk yield, rumination time, or change in body weight or body condition score. Overall, these findings suggest that offering free-choice hay for the first 5 d after calving may reduce serum inflammatory marker concentration, but milk yield may not increase, due to lower intake.


Subject(s)
Diet , Lactation , Female , Cattle , Animals , Diet/veterinary , Haptoglobins/metabolism , Animal Feed/analysis , Postpartum Period , Milk/metabolism , Starch/metabolism , Gene Expression , Colon
3.
JDS Commun ; 3(5): 362-367, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36340897

ABSTRACT

This study evaluated the effects of dietary butyrate supplementation and oral nonsteroidal antiinflammatory drug (NSAID) administration on uterine inflammation and the interval from calving to first ovulation (ICFO; in days). We hypothesized that a combination of dietary butyrate and oral NSAID would reduce uterine inflammation and decrease ICFO. Sixty-five cows were enrolled in a 2 × 2 factorial design and assigned to receive an iso-energetic diet containing a supplement of either butyrate (fatty acid-coated calcium butyrate) or control (commercial fat and calcium carbonate mixture) at 1.42% of diet dry matter, during the calving transition period from -28 (±3) to +24 (±3) days in milk (DIM; calving = d 0). At 12 to 24 h postcalving, cows received an oral NSAID (1 mg of meloxicam/kg of BW) or a placebo (food dye). Ovarian ultrasonography was performed weekly from 14 DIM until first ovulation or up to 56 DIM. Endometrial cytology was performed at 28 DIM to assess uterine inflammation based on polymorphonuclear leukocytes (PMN). No interactions were detected between treatments. The proportions of cows with high (>18%) endometrial PMN did not differ between butyrate and control diets or between NSAID and placebo. Mean (± standard error of mean) ICFO did not differ between butyrate (28 ± 2 d) and control (25 ± 2 d) or between NSAID (29 ± 2 d) and placebo (24 ± 2 d). However, the ovulation rate up to 56 DIM (hazard ratio: 0.61; 95% confidence interval: 0.35 to 1.04) established by survival analysis tended to be lower in NSAID than in placebo. In conclusion, dietary butyrate supplementation and oral NSAID administration did not reduce endometrial inflammation or the mean ICFO, but NSAID-treated cows tended to have a lower rate of ovulation up to 56 DIM.

4.
J Dairy Sci ; 105(5): 4144-4155, 2022 May.
Article in English | MEDLINE | ID: mdl-35307174

ABSTRACT

Dairy cattle experience inflammation during the calving transition period, and butyrate and nonsteroidal anti-inflammatory drugs (NSAID) are expected to reduce the inflammation. Our objective was to evaluate the effects of dietary butyrate supplementation and oral NSAID administration on feed intake, serum inflammatory markers, plasma metabolites, and milk production of dairy cows during the calving transition period. Eighty-three Holstein cows were used in the experiment with a 2 × 2 factorial arrangement of treatments. The cows were blocked by parity and calving date, and randomly assigned to a dietary butyrate or control supplement, and NSAID or a placebo oral administration. Experimental diets were iso-energetic containing calcium butyrate at 1.42% of diet dry matter (DM) or the control supplement (1.04% commercial fat supplement and 0.38% calcium carbonate of diet DM). The close-up diets contained 13.3% starch and 42.4% neutral detergent fiber on a DM basis, and were fed from 28 d before expected calving date until calving. The postpartum diets contained 22.1% starch and 34.1% neutral detergent fiber on a DM basis and were fed from calving to 24 d after calving. Oral NSAID (1 mg of meloxicam/kg of body weight) or placebo (food dye) was administered 12 to 24 h after calving. Dietary butyrate supplementation and oral NSAID administration did not affect milk yield or postpartum serum concentrations of amyloid A and haptoglobin. However, butyrate-fed cows increased plasma fatty acid concentration on d -4 relative to calving (501 vs. 340 µEq/L) and tended to increase serum haptoglobin concentration (0.23 vs. 0.10 mg/mL). There was a supplement by drug interaction effect on plasma glucose concentration on d 4; in cows administered the placebo drug, butyrate supplementation decreased plasma glucose concentration compared with control-fed cows (62.8 vs. 70.1 mg/dL). Butyrate-fed cows tended to have lower milk crude protein yield compared with cows fed the control diet (1.21 vs. 1.27 kg/d). Dietary butyrate supplementation and oral NSAID administration did not have overall positive effects on production performance of dairy cows during the calving transition period.


Subject(s)
Cattle Diseases , Lactation , Administration, Oral , Animals , Anti-Inflammatory Agents, Non-Steroidal , Blood Glucose/metabolism , Butyrates/metabolism , Cattle , Cattle Diseases/metabolism , Detergents/metabolism , Diet/veterinary , Dietary Fiber/metabolism , Dietary Supplements , Female , Haptoglobins/metabolism , Inflammation/metabolism , Inflammation/veterinary , Milk/metabolism , Postpartum Period/metabolism , Pregnancy , Starch/metabolism
5.
J Dairy Sci ; 103(5): 4423-4434, 2020 May.
Article in English | MEDLINE | ID: mdl-32113755

ABSTRACT

This study investigated how providing hay mixed with calf starter to dairy calves affected their solid feed intake, feed sorting, growth, and plasma metabolite and hormone concentrations. Forty Holstein heifer calves were fed a texturized calf starter (23.4% crude protein, 32.3% starch on a dry matter basis) and chopped Klein grass hay as separate components (CONT) or the same starter and hay mixed at a 90:10 ratio on an as-fed basis (MIX) ad libitum from the date transported to the research farm (4-7 d of life) to 90 d of life. Calves were provided milk replacer (28% crude protein, 15% fat) at up to 557 g/d before the study, 737 g/d from d 14 to 20, 1,105 g/d from d 21 to 41, 737 g/d from d 42 to 48, and 557 g/d from d 49 to 55 on a dry matter basis. calves were fully weaned on d 56. Feed sorting for the MIX calves was evaluated using the Penn State Particle Separator; the sorting index was calculated as the actual intake as a percentage of predicted intake, with values >100% indicating sorting for and values <100% indicating sorting against. Treatment did not affect solid feed intake, growth performance, or plasma metabolite or hormone concentration during the preweaning or weaning periods. However, calves in the MIX treatment had less neutral detergent fiber intake as a percentage of solid feed intake than CONT calves in the preweaning (23.3 vs. 37.0%) and weaning (23.5 vs. 25.8%) periods, although MIX calves sorted (107.2%) for long particles, which were primarily hay, during weaning. During the postweaning period, MIX calves had greater neutral detergent fiber intake as a percentage of solid feed intake compared with CONT calves (23.4 vs. 22.7%), although they sorted against long particles (84.4%), and decreased solid feed dry matter intake compared with CONT calves (3,292 vs. 3,536 g/d) and average daily gain (1.20 vs. 1.31 kg/d). Weaned calves in the MIX treatment also had lower plasma concentration of glucagon-like peptide 2 compared with CONT (0.46 vs. 0.77 ng/mg) but had higher plasma concentrations of ghrelin (0.05 vs. 0.03 ng/mg). These results suggest that feeding a mixture of texturized calf starter and chopped hay at the 90:10 ratio to postweaned calves may decrease solid feed intake and growth.


Subject(s)
Animal Feed/analysis , Cattle/physiology , Diet/veterinary , Eating , Animals , Cattle/blood , Cattle/growth & development , Female
SELECTION OF CITATIONS
SEARCH DETAIL