Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
Add more filters










Publication year range
1.
Front Pharmacol ; 15: 1355893, 2024.
Article in English | MEDLINE | ID: mdl-38545547

ABSTRACT

The family of pH (Low) Insertion Peptides (pHLIP) comprises a tumor-agnostic technology that uses the low pH (or high acidity) at the surfaces of cells within the tumor microenvironment (TME) as a targeted biomarker. pHLIPs can be used for extracellular and intracellular delivery of a variety of imaging and therapeutic payloads. Unlike therapeutic delivery targeted to specific receptors on the surfaces of particular cells, pHLIP targets cancer, stromal and some immune cells all at once. Since the TME exhibits complex cellular crosstalk interactions, simultaneous targeting and delivery to different cell types leads to a significant synergistic effect for many agents. pHLIPs can also be positioned on the surfaces of various nanoparticles (NPs) for the targeted intracellular delivery of encapsulated payloads. The pHLIP technology is currently advancing in pre-clinical and clinical applications for tumor imaging and treatment.

2.
Front Pharmacol ; 15: 1346756, 2024.
Article in English | MEDLINE | ID: mdl-38495104

ABSTRACT

Introduction: We have developed a delivery approach that uses two pHLIP peptides that collaborate in the targeted intracellular delivery of a single payload, dimeric STINGa (dMSA). Methods: dMSA was conjugated with two pHLIP peptides via S-S cleavable self-immolating linkers to form 2pHLIP-dMSA. Results: Biophysical studies were carried out to confirm pH-triggered interactions of the 2pHLIP-dMSA with membrane lipid bilayers. The kinetics of linker self-immolation and dMSA release, the pharmacokinetics, the binding to plasma proteins, the stability of the agent in plasma, the targeting and resulting cytokine activation in tumors, and the biodistribution of the construct was investigated. This is the first study demonstrating that combining the energy of the membrane-associated folding of two pHLIPs can be utilized to enhance the targeted intracellular delivery of large therapeutic cargo payloads. Discussion: Linking two pHLIPs to the cargo extends blood half-life, and targeted delivery of dimeric STINGa induces tumor eradication and the development of robust anti-cancer immunity.

3.
Int J Pharm ; 654: 123954, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38428548

ABSTRACT

Calicheamicin is a potent, cell-cycle independent enediyne antibiotic that binds and cleaves DNA. Toxicity has led to its use in a targeted form, as an antibody-drug conjugate approved for the treatment of liquid tumors. We used a reduced calicheamicin to conjugate it to a single cysteine residue at the membrane-inserting end of a pH Low Insertion Peptide (pHLIP) that targets imaging and therapeutic agents to tumors. The cytoplasmic reduction of the disulfide releases the calicheamicin, and activation, DNA binding, and strand scission ensue. We studied the interaction of pHLIP-calicheamicin with liposomal and cellular membranes and demonstrated that the agent exhibits cytotoxic activity both in highly proliferative cancer cells and in non-proliferative immune cells, such as polarized M2 macrophages. In vivo, the agent was effective in inhibiting tumor growth in mice with no signs of toxicity. Biodistribution studies confirmed tumor targeting with no accumulation of the agent in organs and tissues. The agent was found within the tumor mass and tumor-stroma interface. Treatment of tumors led to the depletion of CD206+ M2- tumor-associated macrophages within the tumor core. pHLIP-calicheamicin could be pursued as an effective therapeutic for the treatment of solid tumors.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Mice , Calicheamicins , Tissue Distribution , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , DNA , Hydrogen-Ion Concentration
4.
Front Oncol ; 12: 1023959, 2022.
Article in English | MEDLINE | ID: mdl-36330464

ABSTRACT

Despite significant progress in the development of novel STING agonists (STINGa), applications appear to be challenged by the low efficiency and poor selectivity of these agents. A pH Low Insertion Peptide (pHLIP) extends the lifetime of a STINGa in the blood and targets it to acidic cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), myeloid derived suppressor cells (mMDSCs) and dendritic cells (DCs). CAFs constitute 25% of all live cells within CT26 tumors, and M2-type TAMs and mMDSCs are the most abundant among the immune cells. The resulting activation of cytokines within the tumor microenvironment (TME) triggers the eradication of small (100 mm3) and large (400-700 mm3) CT26 tumors in mice after a single dose of pHLIP-STINGa. The tumor stroma was destroyed (the number of CAFs was reduced by 98%), intratumoral hemorrhage developed, and the level of acidity within the TME was reduced. Further, no tumors developed in 20 out of 25 tumor-free mice re-challenged by an additional injection of cancer cells. The therapeutic effect on CT26 tumors was insignificant in nude mice, lacking T-cells. Thus, targeted delivery of STINGa to tumor stroma and TAMs induces activation of signaling, potentially resulting in the recruitment and infiltration of T-cells, which gain access to the tumor core. The cytotoxic activity of T-cells is not impaired by an acidic environment and immune memory is developed.

5.
Front Urol ; 22022.
Article in English | MEDLINE | ID: mdl-36439552

ABSTRACT

Acidity is a useful biomarker for the targeting of metabolically active-cells in tumors. pH Low Insertion Peptides (pHLIPs) sense the pH at the surfaces of tumor cells and can facilitate intracellular delivery of cell-permeable and cell-impermeable cargo molecules. In this study we have shown the targeting of malignant lesions in human bladders by fluorescent pHLIP agents, intracellular delivery of amanitin toxin by pHLIP for the inhibition of urothelial cancer cell proliferation, and enhanced potency of pHLIP-amanitin for cancer cells with 17p loss, a mutation frequently present in urothelial cancers. Twenty-eight ex-vivo bladder specimens, from patients undergoing robotic assisted laparoscopic radical cystectomy for bladder cancer, were treated via intravesical incubation for 15-60 minutes with pHLIP conjugated to indocyanine green (ICG) or IR-800 near infrared fluorescent (NIRF) dyes at concentrations of 4-8 µM. White light cystoscopy identified 47/58 (81%) and NIRF pHLIP cystoscopy identified 57/58 (98.3%) of malignant lesions of different subtypes and stages selected for histopathological processing. pHLIP NIRF imaging improved diagnosis by 17.3% (p < 0.05). All carcinoma-in-situ cases missed by white light cystoscopy were targeted by pHLIP agents and were diagnosed by NIRF imaging. We also investigated the interactions of pHLIP-amanitin with urothelial cancer cells of different grades. pHLIP-amanitin produced concentration- and pH-dependent inhibition of the proliferation of urothelial cancer cells treated for 2 hrs at concentrations up to 4 µM. A 3-4x enhanced cytotoxicity of pHLIP-amanitin was observed for cells with a 17p loss after 2 hrs of treatment at pH6. Potentially, pHLIP technology may improve the management of urothelial cancers, including imaging of malignant lesions using pHLIP-ICG for diagnosis and surgery, and the use of pHLIP-amanitin for treatment of superficial bladder cancers via intravesical instillation.

6.
Fac Rev ; 11: 29, 2022.
Article in English | MEDLINE | ID: mdl-36267301

ABSTRACT

Proteins that are expressed on membrane surfaces or secreted are involved in all aspects of cellular and organismal life, and as such require extremely high fidelity during their synthesis and maturation. These proteins are synthesized at the endoplasmic reticulum (ER) where a dedicated quality control system (ERQC) ensures only properly matured proteins reach their destinations. An essential component of this process is the identification of proteins that fail to pass ERQC and their retrotranslocation to the cytosol for proteasomal degradation. This study by Wu et al. reports a cryo-electron microscopy (cryo-EM) structure of the five-protein channel through which aberrant proteins are extracted from the ER, providing insights into how recognition of misfolded proteins is coupled to their transport through a hydrophobic channel that acts to thin the ER membrane, further facilitating their dislocation to the cytosol1.

7.
Mol Imaging Biol ; 24(6): 874-885, 2022 12.
Article in English | MEDLINE | ID: mdl-35604527

ABSTRACT

PURPOSE: Acidity can be a useful alternative biomarker for the targeting of metabolically active cells in certain diseased tissues, as in acute inflammation or aggressive tumors. We investigated the targeting of activated macrophages by pH low insertion peptides (pHLIPs), an established technology for targeting cell-surface acidity. PROCEDURES: The uptake of fluorescent pHLIPs by activated macrophages was studied in cell cultures, in a mouse model of lung inflammation, and in a mouse tumor model. Fluorescence microscopy, whole-body and organ imaging, immunohistochemistry, and FACS analysis were employed. RESULTS: We find that cultured, activated macrophages readily internalize pHLIPs. The uptake is higher in glycolytic macrophages activated by LPS and INF-γ compared to macrophages activated by IL-4/IL-13. Fluorescent pHLIPs target LPS-induced lung inflammation in mice. In addition to marking cancer cells within the tumor microenvironment, fluorescent pHLIPs target CD45+, CD11b+, F4/80+, and CD206+ tumor-associated macrophages with no significant targeting of other immune cells. Also, fluorescent pHLIPs target CD206-positive cells found in the inguinal lymph nodes of animals inoculated with breast cancer cells in mammary fat pads. CONCLUSIONS: pHLIP peptides sense low cell surface pH, which triggers their insertion into the cell membrane. Unlike cancerous cells, activated macrophages do not retain inserted pHLIPs on their surfaces, instead their highly active membrane recycling moves the pHLIPs into endosomes. Targeting activated macrophages in diseased tissues may enable clinical visualization and therapeutic opportunities.


Subject(s)
Drug Delivery Systems , Neoplasms , Mice , Animals , Drug Delivery Systems/methods , Hydrogen-Ion Concentration , Lipopolysaccharides/pharmacology , Neoplasms/pathology , Peptides , Macrophages/pathology , Tumor Microenvironment
8.
Front Bioeng Biotechnol ; 10: 1082290, 2022.
Article in English | MEDLINE | ID: mdl-36686229

ABSTRACT

Targeted antigen delivery allows activation of the immune system to kill cancer cells. Here we report the targeted delivery of various epitopes, including a peptide, a small molecule, and a sugar, to tumors by pH Low Insertion Peptides (pHLIPs), which respond to surface acidity and insert to span the membranes of metabolically activated cancer and immune cells within tumors. Epitopes linked to the extracellular ends of pH Low Insertion Peptide peptides were positioned at the surfaces of tumor cells and were recognized by corresponding anti-epitope antibodies. Special attention was devoted to the targeted delivery of the nine residue HA peptide epitope from the Flu virus hemagglutinin. The HA sequence is not present in the human genome, and immunity is readily developed during viral infection or immunization with KLH-HA supplemented with adjuvants. We tested and refined a series of double-headed HA-pHLIP agents, where two HA epitopes were linked to a single pH Low Insertion Peptide peptide via two Peg12 or Peg24 polymers, which enable HA epitopes to engage both antibody binding sites. HA-epitopes positioned at the surfaces of tumor cells remain exposed to the extracellular space for 24-48 h and are then internalized. Different vaccination schemes and various adjuvants, including analogs of FDA approved adjuvants, were tested in mice and resulted in a high titer of anti-HA antibodies. Anti-HA antibody binds HA-pHLIP in blood and travels as a complex leading to significant tumor targeting with no accumulation in organs and to hepatic clearance. HA-pHLIP agents induced regression of 4T1 triple negative breast tumor and B16F10 MHC-I negative melanoma tumors in immunized mice. The therapeutic efficacy potentially is limited by the drop of the level of anti-HA antibodies in the blood to background level after three injections of HA-pHLIP. We hypothesize that additional boosts would be required to keep a high titer of anti-HA antibodies to enhance efficacy. pH Low Insertion Peptide-targeted antigen therapy may provide an opportunity to treat tumors unresponsive to T cell based therapies, having a small number of neo-antigens, or deficient in MHC-I presentation at the surfaces of cancer cells either alone or in combination with other approaches.

10.
iScience ; 24(10): 103208, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34755085

ABSTRACT

Paradoxically, many microRNAs appear to exhibit entirely opposite functions when placed in different contexts. For example, miR-125b has been shown to be pro-apoptotic in some studies, but anti-apoptotic in others. To investigate this phenomenon, we combine computational modeling with experimental approaches to examine how the function of miR-125b in apoptosis varies with respect to the expression levels of its pro-apoptotic and anti-apoptotic targets. In doing so, we elucidate a general trend that miR-125b is more pro-apoptotic when its anti-apoptotic targets are overexpressed, whereas it is more anti-apoptotic when its pro-apoptotic targets are overexpressed. We show that it is possible to completely reverse miR-125b's function in apoptosis by modifying the expression levels of its target genes. Furthermore, miR-125b's function may also be altered by the presence of anticancer drugs. These results suggest that the function of a microRNA can vary substantially and is dependent on its target gene expression levels.

11.
NAR Cancer ; 3(2): zcab021, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34316708

ABSTRACT

Topoisomerase inhibitors are potent DNA damaging agents which are widely used in oncology, and they demonstrate robust synergistic tumor cell killing in combination with DNA repair inhibitors, including poly(ADP)-ribose polymerase (PARP) inhibitors. However, their use has been severely limited by the inability to achieve a favorable therapeutic index due to severe systemic toxicities. Antibody-drug conjugates address this issue via antigen-dependent targeting and delivery of their payloads, but this approach requires specific antigens and yet still suffers from off-target toxicities. There is a high unmet need for a more universal tumor targeting technology to broaden the application of cytotoxic payloads. Acidification of the extracellular milieu arises from metabolic adaptions associated with the Warburg effect in cancer. Here we report the development of a pH-sensitive peptide-drug conjugate to deliver the topoisomerase inhibitor, exatecan, selectively to tumors in an antigen-independent manner. Using this approach, we demonstrate potent in vivo cytotoxicity, complete suppression of tumor growth across multiple human tumor models, and synergistic interactions with a PARP inhibitor. These data highlight the identification of a peptide-topoisomerase inhibitor conjugate for cancer therapy that provides a high therapeutic index, and is applicable to all types of human solid tumors in an antigen-independent manner.

12.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Article in English | MEDLINE | ID: mdl-33443162

ABSTRACT

A pH-Low Insertion Peptide (pHLIP) is a pH-sensitive peptide that undergoes membrane insertion, resulting in transmembrane helix formation, on exposure to acidity at a tumor cell surface. As a result, pHLIPs preferentially accumulate within tumors and can be used for tumor-targeted imaging and drug delivery. Here we explore the determinants of pHLIP insertion, targeting, and delivery through a computational modeling approach. We generate a simple mathematical model to describe the transmembrane insertion process and then integrate it into a pharmacokinetic model, which predicts the tumor vs. normal tissue biodistribution of the most studied pHLIP, "wild-type pHLIP," over time after a single intravenous injection. From these models, we gain insight into the various mechanisms behind pHLIP tumor targeting and delivery, as well as the various biological parameters that influence it. Furthermore, we analyze how changing the properties of pHLIP can influence the efficacy of tumor targeting and delivery, and we predict the properties for optimal pHLIP phenotypes that have superior tumor targeting and delivery capabilities compared with wild-type pHLIP.


Subject(s)
Drug Delivery Systems/methods , Membrane Proteins/chemistry , Membrane Proteins/pharmacokinetics , Cell Membrane/metabolism , Computational Biology/methods , Hydrogen-Ion Concentration , Membrane Proteins/metabolism , Models, Theoretical , Peptides/chemistry , Peptides/pharmacokinetics , Tissue Distribution , Tumor Microenvironment/physiology
13.
Sci Rep ; 10(1): 18356, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33110131

ABSTRACT

Fluorescence imaging has seen enduring use in blood flow visualization and is now finding a new range of applications in image-guided surgery. In this paper, we report a translational study of a new fluorescent agent for use in surgery, pHLIP ICG, where ICG (indocyanine green) is a surgical fluorescent dye used widely for imaging blood flow. We studied pHLIP ICG interaction with the cell membrane lipid bilayer, the pharmacology and toxicology in vitro and in vivo (mice and dogs), and the biodistribution and clearance of pHLIP ICG in mice. The pHLIP ICG tumor targeting and imaging efficacy studies were carried out in several murine and human mouse tumor models. Blood vessels were imaged in mice and pigs. Clinical Stryker imaging instruments for endoscopy and open surgery were used in the study. Intravenously administered pHLIP ICG exhibits a multi-hour circulation half-life, offering protracted delineation of vasculature. As it clears from the blood, pHLIP ICG targets tumors and tumor stroma, marking them for surgical removal. pHLIP ICG is non-toxic, marks blood flow for hours after injection, and effectively delineates tumors for improved resection on the day after administration.


Subject(s)
Fluorescent Dyes , Indocyanine Green , Membrane Proteins , Neoplasms, Experimental/surgery , Animals , Dogs , Female , Fluorescence , Fluorescent Dyes/adverse effects , Fluorescent Dyes/pharmacokinetics , Half-Life , Humans , Indocyanine Green/adverse effects , Indocyanine Green/pharmacokinetics , Male , Membrane Proteins/adverse effects , Membrane Proteins/pharmacokinetics , Mice , Mice, Inbred BALB C , Neoplasm Transplantation , Neoplasms, Experimental/blood supply , Neoplasms, Experimental/diagnostic imaging , Surgery, Computer-Assisted/methods
14.
Article in English | MEDLINE | ID: mdl-32411684

ABSTRACT

The advantages of targeted therapy have motivated many efforts to find distinguishing features between the molecular cell surface landscapes of diseased and normal cells. Typically, the features have been proteins, lipids or carbohydrates, but other approaches are emerging. In this discussion, we examine the use of cell surface acidity as a feature that can be exploited by using pH-sensitive peptide folding to target agents to diseased cell surfaces or cytoplasms.

15.
Proc Natl Acad Sci U S A ; 117(22): 12095-12100, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32409607

ABSTRACT

To advance mechanistic understanding of membrane-associated peptide folding and insertion, we have studied the kinetics of three single tryptophan pHLIP (pH-Low Insertion Peptide) variants, where tryptophan residues are located near the N terminus, near the middle, and near the inserting C-terminal end of the pHLIP transmembrane helix. Single-tryptophan pHLIP variants allowed us to probe different parts of the peptide in the pathways of peptide insertion into the lipid bilayer (triggered by a pH drop) and peptide exit from the bilayer (triggered by a rise in pH). By using pH jumps of different magnitudes, we slowed down the processes and established the intermediates that helped us to understand the principles of insertion and exit. The obtained results should also aid the applications in medicine that are now entering the clinic.


Subject(s)
Cell Membrane/metabolism , Lipid Bilayers/metabolism , Membrane Proteins/metabolism , Peptide Fragments/metabolism , Cell Membrane/chemistry , Humans , Hydrogen-Ion Concentration , Kinetics , Lipid Bilayers/chemistry , Liposomes , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mutation , Peptide Fragments/chemistry , Peptide Fragments/genetics , Protein Folding , Thermodynamics , Tryptophan/chemistry , Tryptophan/genetics
16.
Mol Cancer Res ; 18(6): 873-882, 2020 06.
Article in English | MEDLINE | ID: mdl-32098827

ABSTRACT

The development of therapeutic agents that specifically target cancer cells while sparing healthy tissue could be used to enhance the efficacy of cancer therapy without increasing its toxicity. Specific targeting of cancer cells can be achieved through the use of pH-low insertion peptides (pHLIP), which take advantage of the acidity of the tumor microenvironment to deliver cargoes selectively to tumor cells. We developed a pHLIP-peptide nucleic acid (PNA) conjugate as an antisense reagent to reduce expression of the otherwise undruggable DNA double-strand break repair factor, KU80, and thereby radiosensitize tumor cells. Increased antisense activity of the pHLIP-PNA conjugate was achieved by partial mini-PEG sidechain substitution of the PNA at the gamma position, designated pHLIP-αKu80(γ). We evaluated selective effects of pHLIP-αKu80(γ) in cancer cells in acidic culture conditions as well as in two subcutaneous mouse tumor models. Fluorescently labeled pHLIP-αKu80(γ) delivers specifically to acidic cancer cells and accumulates preferentially in tumors when injected i.v. in mice. Furthermore, pHLIP-αKu80(γ) selectively reduced KU80 expression in cells under acidic conditions and in tumors in vivo. When pHLIP-αKu80(γ) was administered to mice prior to local tumor irradiation, tumor growth was substantially reduced compared with radiation treatment alone. Furthermore, there was no evidence of acute toxicity associated with pHLIP-αKu80(γ) administration to the mice. These results establish pHLIP-αKu80(γ) as a tumor-selective radiosensitizing agent. IMPLICATIONS: This study describes a novel agent, pHLIP-αKu80(γ), which combines PNA antisense and pHLIP technologies to selectively reduce the expression of the DNA repair factor KU80 in tumors and confer tumor-selective radiosensitization.


Subject(s)
Drug Delivery Systems , Gene Expression Regulation, Neoplastic/radiation effects , Ku Autoantigen/antagonists & inhibitors , Lung Neoplasms/radiotherapy , Membrane Proteins/chemistry , Radiation, Ionizing , Animals , Apoptosis , Cell Proliferation , Humans , Hydrogen-Ion Concentration , Ku Autoantigen/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
17.
Mol Pharm ; 17(2): 461-471, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31855437

ABSTRACT

Tumor-targeted drug delivery systems offer not only the advantage of an enhanced therapeutic index, but also the possibility of overcoming the limitations that have largely restricted drug design to small, hydrophobic, "drug-like" molecules. Here, we explore the ability of a tumor-targeted delivery system centered on the use of a pH-low insertion peptide (pHLIP) to directly deliver moderately polar, multi-kDa molecules into tumor cells. A pHLIP is a short, pH-responsive peptide capable of inserting across a cell membrane to form a transmembrane helix at acidic pH. pHLIPs target the acidic tumor microenvironment with high specificity, and a drug attached to the inserting end of a pHLIP can be translocated across the cell membrane during the insertion process. We investigate the ability of wildtype pHLIP to deliver peptide nucleic acid (PNA) cargoes of varying sizes across lipid membranes. We find that pHLIP effectively delivers PNAs up to ∼7 kDa into cells in a pH-dependent manner. In addition, pHLIP retains its tumor-targeting capabilities when linked to cargoes of this size, although the amount delivered is reduced for PNA cargoes greater than ∼6 kDa. As drug-like molecules are traditionally restricted to sizes of ∼500 Da, this constitutes an order-of-magnitude expansion in the size range of deliverable drug candidates.


Subject(s)
Cytoplasm/drug effects , Drug Delivery Systems/methods , Melanoma/drug therapy , Membrane Proteins/metabolism , Peptide Nucleic Acids/administration & dosage , Skin Neoplasms/drug therapy , A549 Cells , Animals , Cell Membrane/metabolism , Cell Membrane Permeability/drug effects , Disease Models, Animal , Humans , Hydrogen-Ion Concentration , Lipid Bilayers/metabolism , Melanoma/pathology , Membrane Proteins/pharmacology , Mice , Mice, Inbred C57BL , Molecular Targeted Therapy/methods , Skin Neoplasms/pathology , Treatment Outcome , Tumor Microenvironment/drug effects
18.
Mol Imaging Biol ; 21(6): 1020-1025, 2019 12.
Article in English | MEDLINE | ID: mdl-30989440

ABSTRACT

PURPOSE: To develop a tool to measure the pH at the surfaces of individual cells. PROCEDURES: The SNARF pH-sensitive dye was conjugated to a pHLIP® peptide (pH-Low Insertion Peptide) that binds cellular membranes in tumor spheroids. A beam splitter allows simultaneous recording of two images (580 and 640 nm) by a CCD camera. The ratio of the two images is converted into a pH map resolving single spheroid cells. An average pH for each cell is calculated and a pH histogram is derived. RESULTS: Surface pH depends on cellular glycolytic activity, which was varied by adding glucose or deoxy-glucose. Glucose was found to decrease the surface pH relative to the pH of the bulk solution. The surface pH of metastatic cancer cells was lower than that of non-metastatic cells indicating a higher glycolytic activity. CONCLUSIONS: Our method allows cell surface pH measurement and its correlation with cellular glycolytic activity.


Subject(s)
Cell Membrane/metabolism , Neoplasms/metabolism , Benzopyrans/chemistry , Benzopyrans/metabolism , Cell Line, Tumor , Humans , Hydrogen-Ion Concentration , Image Processing, Computer-Assisted , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Neoplasm Metastasis , Neoplasms/pathology
19.
Biophys J ; 114(9): 2107-2115, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29742404

ABSTRACT

The physical properties of lipid bilayers, such as curvature and fluidity, can affect the interactions of polypeptides with membranes, influencing biological events. Additionally, given the growing interest in peptide-based therapeutics, understanding the influence of membrane properties on membrane-associated peptides has potential utility. pH low insertion peptides (pHLIPs) are a family of water-soluble peptides that can insert across cell membranes in a pH-dependent manner, enabling the use of pH to follow peptide-lipid interactions. Here we study pHLIP interactions with liposomes varying in size and composition, to determine the influence of several key membrane physical properties. We find that pHLIP binding to bilayer surfaces at neutral pH is governed by the ease of access to the membrane's hydrophobic core, which can be facilitated by membrane curvature, thickness, and the cholesterol content of the membrane. After surface binding, if the pH is lowered, the kinetics of pHLIP folding to form a helix and subsequent insertion across the membrane depends on the fluidity and energetic dynamics of the membrane. We showed that pHLIP is capable of forming a helix across lipid bilayers of different thicknesses at low pH. However, the kinetics of the slow phase of insertion corresponding to the translocation of C-terminal end of the peptide across lipid bilayer, vary approximately twofold, and correlate with bilayer thickness and fluidity. Although these influences are not large, local curvature variations in membranes of different fluidity could selectively influence surface binding in mixed cell populations.


Subject(s)
Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Membrane Proteins/metabolism , Hydrogen-Ion Concentration , Liposomes/chemistry , Liposomes/metabolism , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Protein Binding , Surface Properties
20.
Proc Natl Acad Sci U S A ; 115(12): E2811-E2818, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29507241

ABSTRACT

The pH (low) insertion peptides (pHLIPs) target acidity at the surfaces of cancer cells and show utility in a wide range of applications, including tumor imaging and intracellular delivery of therapeutic agents. Here we report pHLIP constructs that significantly improve the targeted delivery of agents into tumor cells. The investigated constructs include pHLIP bundles (conjugates consisting of two or four pHLIP peptides linked by polyethylene glycol) and Var3 pHLIPs containing either the nonstandard amino acid, γ-carboxyglutamic acid, or a glycine-leucine-leucine motif. The performance of the constructs in vitro and in vivo was compared with previous pHLIP variants. A wide range of experiments was performed on nine constructs including (i) biophysical measurements using steady-state and kinetic fluorescence, circular dichroism, and oriented circular dichroism to study the pH-dependent insertion of pHLIP variants across the membrane lipid bilayer; (ii) cell viability assays to gauge the pH-dependent potency of peptide-toxin constructs by assessing the intracellular delivery of the polar, cell-impermeable cargo molecule amanitin at physiological and low pH (pH 7.4 and 6.0, respectively); and (iii) tumor targeting and biodistribution measurements using fluorophore-peptide conjugates in a breast cancer mouse model. The main principles of the design of pHLIP variants for a range of medical applications are discussed.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Delivery Systems/methods , Membrane Proteins/chemistry , Peptides/administration & dosage , Amanitins/chemistry , Animals , Antineoplastic Agents/chemistry , Circular Dichroism , Female , HeLa Cells , Humans , Hydrogen-Ion Concentration , Lipid Bilayers/chemistry , Liposomes/chemistry , Membrane Proteins/genetics , Mice, Inbred BALB C , Neoplasms, Experimental/drug therapy , Peptides/chemistry , Peptides/pharmacokinetics , Polyethylene Glycols/chemistry , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...