Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 9(6): 220370, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35719882

ABSTRACT

Several extinct chinchilloid rodents in the clades Dinomyidae and Neoepiblemidae grew to sizes much larger than any living rodent species. However, the exact size of these rodents is a matter of controversy, with authors disagreeing due to issues over extrapolation and model selection. Prior estimates for the two largest extinct rodents, Phoberomys pattersoni and Josephoartigasia monesi, range from 230 to 700 kg for P. pattersoni and 350 to 2600 kg for J. monesi. Here, I estimate body mass in large, extinct rodents using occipital condyle width (OCW), a strong predictor of body size in mammals, using a dataset that circumvents many of the issues faced by previous studies of species. Body masses under shape-corrected OCW are much lower than previous studies: 108-200 kg for P. pattersoni and 480 kg for J. monesi. Mass estimates for other rodent taxa (Neoepiblema, Telicomys, Dinomys) agree with previous studies. Estimates using skull length, corrected condyle width and head-body length are similar, suggesting estimates of 150 kg for Phoberomys and 480 kg for Josephoartigasia, and that larger estimates of 700 and 1200 kg are unlikely. High estimates in previous studies appear to be due to the unrecognized, nonlinear relationship between certain skeletal measurements (skull size) and body mass.

3.
BMC Biol ; 20(1): 37, 2022 02 07.
Article in English | MEDLINE | ID: mdl-35130893

ABSTRACT

BACKGROUND: Body mass estimation is of paramount importance for paleobiological studies, as body size influences numerous other biological parameters. In mammals, body mass has been traditionally estimated using regression equations based on measurements of the dentition or limb bones, but for many species teeth are unreliable estimators of body mass and postcranial elements are unknown. This issue is exemplified in several groups of extinct mammals that have disproportionately large heads relative to their body size and for which postcranial remains are rare. In these taxa, previous authors have noted that the occiput is unusually small relative to the skull, suggesting that occiput dimensions may be a more accurate predictor of body mass. RESULTS: The relationship between occipital condyle width (OCW) and body mass was tested using a large dataset (2127 specimens and 404 species) of mammals with associated in vivo body mass. OCW was found to be a strong predictor of body mass across therian mammals, with regression models of Mammalia as a whole producing error values (~ 31.1% error) comparable to within-order regression equations of other skeletal variables in previous studies. Some clades (e.g., monotremes, lagomorphs) exhibited specialized occiput morphology but followed the same allometric relationship as the majority of mammals. Compared to two traditional metrics of body mass estimation, skull length, and head-body length, OCW outperformed both in terms of model accuracy. CONCLUSIONS: OCW-based regression models provide an alternative method of estimating body mass to traditional craniodental and postcranial metrics and are highly accurate despite the broad taxonomic scope of the dataset. Because OCW accurately predicts body mass in most therian mammals, it can be used to estimate body mass in taxa with no close living analogues without concerns of insufficient phylogenetic bracketing or extrapolating beyond the bounds of the data. This, in turn, provides a robust method for estimating body mass in groups for which body mass estimation has previously been problematic (e.g., "creodonts" and other extinct Paleogene mammals).


Subject(s)
Mammals , Skull , Animals , Body Size , Extremities , Mammals/anatomy & histology , Phylogeny , Skull/anatomy & histology
4.
Proc Biol Sci ; 285(1870)2018 01 10.
Article in English | MEDLINE | ID: mdl-29298933

ABSTRACT

This study investigates whether terrestrial mammalian carnivore guilds of ancient South America, which developed in relative isolation, were similar to those of other continents. We do so through analyses of clade diversification, ecomorphology and guild structure in the Sparassodonta, metatherians that were the predominant mammalian carnivores of pre-Pleistocene South America. Body mass and 16 characters of the dentition are used to quantify morphological diversity (disparity) in sparassodonts and to compare them to extant marsupial and placental carnivores and extinct North American carnivoramorphans. We also compare trophic diversity of the Early Miocene terrestrial carnivore guild of Santa Cruz, Argentina to that of 14 modern and fossil guilds from other continents. We find that sparassodonts had comparatively low ecomorphological disparity throughout their history and that South American carnivore palaeoguilds, as represented by that of Santa Cruz, Argentina, were unlike modern or fossil carnivore guilds of other continents in their lack of mesocarnivores and hypocarnivores. Our results add to a growing body of evidence highlighting non-analogue aspects of extinct South American mammals and illustrate the dramatic effects that historical contingency can have on the evolution of mammalian palaeocommunities.


Subject(s)
Biodiversity , Carnivora , Marsupialia , Animals , Argentina , Biological Evolution , Dentition , Fossils , North America , Paleodontology , South America
SELECTION OF CITATIONS
SEARCH DETAIL
...