Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 12671, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37652902

ABSTRACT

Conservation gardening (CG) represents a socio-ecological approach to address the decline of native plant species and transform the gardening industry into an innovative conservation tool. However, essential information regarding amenable plants, their ecological requirements for gardening, and commercial availability remains limited and not readily available. In this study, we present a workflow using Germany as a case study to bridge this knowledge gap. We synthesized the Red Lists of all 16 federal states in Germany, and text-mined a comprehensive platform for garden plants, as well as multiple German producers of native plants. To provide accessible information, we developed a user-friendly app ( https://conservation-gardening.shinyapps.io/app-en/ ) that offers region-specific lists of CG plants, along with practical guidance for planting and purchasing. Our findings reveal that a median of 845 plant species are red-listed across federal states (ranging from 515 to 1123), with 41% of these species amenable to gardening (ranging from 29 to 53%), resulting in a total of 988 CG species. Notably, 66% of these species (650) are already available for purchase. Additionally, we observed that many CG plants exhibit drought tolerance and require less fertilizer on average, with implications for long-term urban planning and climate adaptation. Collaborating with gardening experts, we present a selection of purchasable CG balcony plants for each federal state, highlighting the feasibility of CG even for individuals without gardens. With a multitude of declining plants amenable to gardening and the vital role of gardens as refuges and green corridors, CG holds substantial potential to catalyze transformative change in bending the curve of biodiversity loss.


Subject(s)
Gardening , Gardens , Humans , Acclimatization , Biodiversity , Catalysis
2.
Sci Rep ; 12(1): 17559, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266469

ABSTRACT

Tree canopies are considered to effectively buffer climate extremes and to mitigate climate change effects. Droughts, which are predicted to become more frequent in the course of climate change, might alter the microclimatic cooling potential of trees. However, our understanding of how microclimate at the tree canopy level is modulated by environmental and tree characteristics and their interactions is still limited. Here, we investigated canopy temperature regulation for five mature co-occurring tree species for two contrasting hydrological situations during the severe drought in 2018. Even though we observed a significant drought-induced decline in canopy cover and transpiration across tree species, we found evidence that differences in the water use strategies of trees affected cooling mechanisms differently. Although a large share of the variations in the cooling potential of trees was explained by direct and indirect effects of meteorological factors, we identified a gradual shift in importance from latent heat flux to components defining the magnitude of sensible heat flux on the energy budget of tree as the drought gained severity. The decrease in latent heat fluxes, approximated by sap flow rates, furthermore resulted in a reduced cooling potential and an equalization of tree species canopy temperatures.


Subject(s)
Droughts , Trees , Trees/physiology , Microclimate , Forests , Water/physiology
3.
Ecol Lett ; 25(4): 729-739, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34958165

ABSTRACT

Forest canopies are complex and highly diverse environments. Their diversity is affected by pronounced gradients in abiotic and biotic conditions, including variation in leaf chemistry. We hypothesised that branch-localised defence induction and vertical stratification in mature oaks constitute sources of chemical variation that extend across trophic levels. To test this, we combined manipulation of plant defences, predation monitoring, food-choice trials with herbivores and sampling of herbivore assemblages. Both induction and vertical stratification affected branch chemistry, but the effect of induction was stronger. Induction increased predation in the canopy and reduced herbivory in bioassays. The effects of increased predation affected herbivore assemblages by decreasing their abundance, and indirectly, their richness. In turn, we show that there are multiple factors contributing to variation across canopies. Branch-localised induction, variation between tree individuals and predation may be the ones with particularly strong effects on diverse assemblages of insects in temperate forests.


Subject(s)
Herbivory , Trees , Animals , Forests , Insecta , Plant Leaves , Predatory Behavior
4.
Glob Chang Biol ; 28(5): 1870-1883, 2022 03.
Article in English | MEDLINE | ID: mdl-34927360

ABSTRACT

Droughts increasingly threaten the world's forests and their potential to mitigate climate change. In 2018-2019, Central European forests were hit by two consecutive hotter drought years, an unprecedented phenomenon that is likely to occur more frequently with climate change. Here, we examine tree growth and physiological stress responses (increase in carbon isotope composition; Δδ13 C) to this consecutive drought based on tree rings of dominant tree species in a Central European floodplain forest. Tree growth was not reduced for most species in 2018, indicating that water supply in floodplain forests can partly buffer meteorological water deficits. Drought stress responses in 2018 were comparable to former single drought years but the hotter drought in 2018 induced drought legacies in tree growth while former droughts did not. We observed strong decreases in tree growth and increases in Δδ13 C across all tree species in 2019, which are likely driven by the cumulative stress both consecutive hotter droughts exerted. Our results show that consecutive hotter droughts pose a novel threat to forests under climate change, even in forest ecosystems with comparably high levels of water supply.


Subject(s)
Droughts , Ecosystem , Carbon Isotopes , Climate Change , Forests
SELECTION OF CITATIONS
SEARCH DETAIL
...