Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(7): e0253811, 2021.
Article in English | MEDLINE | ID: mdl-34214128

ABSTRACT

During heat sterilization of glucose solutions, a variety of glucose degradation products (GDPs) may be formed. GDPs can cause cytotoxic effects after parenteral administration of these solutions. The aim of the current study therefore was to develop a simple and quick high-performance thin-layer chromatography (HPTLC) method by which the major GDPs can be identified and (summarily) quantified in glucose solutions for parenteral administration. All GDPs were derivatized with o-phenylenediamine (OPD). The resulting GDP derivatives (quinoxalines) were applied to an HPTLC plate. After 20 minutes of chamber saturation with the solvent, the HPTLC plate was developed in a mixture of 1,4-dioxane-toluene-glacial acetic acid (49:49:2, v/v/v), treated with thymol-sulfuric acid spray reagent, and heated at 130°C for 10 minutes. Finally, the GDPs were quantified by using a TLC scanner. For validation, the identities of the quinoxaline derivatives were confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Glyoxal (GO)/methylglyoxal (MGO) and 3-deoxyglucosone (3-DG)/3-deoxygalactosone (3-DGal) could be identified and quantified in pairs, glucosone (2-KDG), 5-hydroxymethylfurfural (5-HMF), and 3,4-dideoxyglucosone-3-ene (3,4-DGE) each individually. For 2-KDG, the linearity of the method was demonstrated in the range of 1-50 µg/mL, for 5-HMF and 3,4-DGE 1-75 µg/mL, for GO/MGO 2-150 µg/mL, and for 3-DG/3-DGal 10-150 µg/mL. All GDPs achieved a limit of detection (LOD) of 2 µg/mL or less and a limit of quantification (LOQ) of 10 µg/mL or less. R2 was 0.982 for 3.4-DGE, 0.997 for 5-HMF, and 0.999 for 2-KDG, 3-DG/3-DGal, and GO/MGO. The intraday precision was between 0.4 and 14.2% and the accuracy, reported as % recovery, between 86.4 and 112.7%. The proposed HPTLC method appears to be an inexpensive, fast, and sufficiently sensitive approach for routine quantitative analysis of GDPs in heat-sterilized glucose solutions.


Subject(s)
Drug Stability , Glucose/analysis , Hot Temperature/adverse effects , Quality Control , Chromatography, Thin Layer , Glucose/administration & dosage , Glucose/chemistry , Glucose/standards , Infusions, Parenteral/standards , Pharmaceutical Solutions/administration & dosage , Pharmaceutical Solutions/analysis , Pharmaceutical Solutions/chemistry , Pharmaceutical Solutions/standards , Sterilization/methods , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...