Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Thorac Oncol ; 15(6): 973-999, 2020 06.
Article in English | MEDLINE | ID: mdl-32018052

ABSTRACT

INTRODUCTION: Acquired cancer therapy resistance evolves under selection pressure of immune surveillance and favors mechanisms that promote drug resistance through cell survival and immune evasion. AXL receptor tyrosine kinase is a mediator of cancer cell phenotypic plasticity and suppression of tumor immunity, and AXL expression is associated with drug resistance and diminished long-term survival in a wide range of malignancies, including NSCLC. METHODS: We aimed to investigate the mechanisms underlying AXL-mediated acquired resistance to first- and third-generation small molecule EGFR tyrosine kinase inhibitors (EGFRi) in NSCLC. RESULTS: We found that EGFRi resistance was mediated by up-regulation of AXL, and targeting AXL reduced reactivation of the MAPK pathway and blocked onset of acquired resistance to long-term EGFRi treatment in vivo. AXL-expressing EGFRi-resistant cells revealed phenotypic and cell signaling heterogeneity incompatible with a simple bypass signaling mechanism, and were characterized by an increased autophagic flux. AXL kinase inhibition by the small molecule inhibitor bemcentinib or siRNA mediated AXL gene silencing was reported to inhibit the autophagic flux in vitro, bemcentinib treatment blocked clonogenicity and induced immunogenic cell death in drug-resistant NSCLC in vitro, and abrogated the transcription of autophagy-associated genes in vivo. Furthermore, we found a positive correlation between AXL expression and autophagy-associated gene signatures in a large cohort of human NSCLC (n = 1018). CONCLUSION: Our results indicate that AXL signaling supports a drug-resistant persister cell phenotype through a novel autophagy-dependent mechanism and reveals a unique immunogenic effect of AXL inhibition on drug-resistant NSCLC cells.


Subject(s)
Lung Neoplasms , Pharmaceutical Preparations , Autophagy , Cell Line, Tumor , Drug Resistance, Neoplasm , ErbB Receptors , Humans , Immunogenic Cell Death , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology
3.
Basic Clin Pharmacol Toxicol ; 116(1): 9-18, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25154903

ABSTRACT

New molecular insight reveals novel points of attack for targeted cancer therapy. The recent advances in cancer genomics and novel insight into the complex biology of cancer make the promise of personalized, targeted cancer medicine closer than ever. The massive parallel sequencing endeavours performed by The Cancer Genome Atlas, the International Cancer Genome Consortium and by numerous individual investigators have provided a comprehensive genomic characterization of a wide range of cancers. The joint efforts enabled by the improved sequencing technology have demonstrated that individual cancers comprise mutational repertoires with only a few frequently recurrent driver genes. Thus, the identification of new drug targets and novel drugs have accelerated and renewed the hopes of personalized cancer therapy achieving clinical reality for a wider range of cancers. Together with cost-effective sequencing technology to perform comprehensive mutational profiling of each individual cancer, this provides the basis for a personalized cancer medicine revolution within the next few years. The aim of this MiniReview is to provide an overview of the history and evolution of targeted cancer therapy, exemplified by molecularly targeted drugs successfully implemented in the clinic. Furthermore, we aim to highlight novel molecular targets for therapeutic intervention, as well as the main present challenges including inter- and intratumor heterogeneity and cellular plasticity in addition to the importance of the tumor micro-environment. Many cancer patients already receive some form of tailored therapy, and recent evidence suggests that novel and highly innovative, targeted approaches are on their way into the clinic.


Subject(s)
Drug Delivery Systems/methods , Neoplasms/drug therapy , Clinical Trials as Topic , Genome, Human , Humans , Molecular Targeted Therapy , Precision Medicine
SELECTION OF CITATIONS
SEARCH DETAIL
...