Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int Marit Health ; 73(1): 1-9, 2022.
Article in English | MEDLINE | ID: mdl-35380168

ABSTRACT

BACKGROUND: In-situ burning (ISB) could be an effective cleanup method during spills. This study aims to study occupational exposure to pollutants emitted from offshore, large-scale ISB-experiments among personnel on vessels involved in ISB. MATERIALS AND METHODS: Six experimental ISBs after release of 4.2-6 m3 crude or refined oils were performed. Air measurements on three vessels were taken of particulate matter (PM) of different size fractions, polycyclic aromatic hydrocarbons (PAH) and volatile organic compounds (VOC). RESULTS: One vessel was located upwind (about 80-140 m) from the burning oil while two work boats were positioned 200-400 m downwind. One of the work boats moved back and forth transverse to the smoke plume while the other followed the edge of the smoke plume downwind. During the burn period (28-63 min) the range of mean concentrations of PM2.5 particles in the closest work boat downwind from the burn (0.068-0.616 mg/m3) was considerably higher than in the upwind vessel (0.0198-0.029 mg/m3) and in the work boat moving downwind at the edge of the visible smoke (0.007-0.078 mg/m3). The particles were mainly in the PM<1 fraction. In the work boat closest to the burn the mean concentration of particulate PAH and VOC was 0.046-0.070 ng/m3 and < limit of detection -17.1 ppm, respectively. CONCLUSIONS: The mean PM2.5 levels in the closest vessel varied between 4 and 41 times higher than the 24-hour Norwegian Air Quality Criteria for the general population, indicating that the particulate exposure may impose a health risk for personnel up to 400 m downwind from an ISB. Exposure to VOC and PAH among crew on board vessels both upwind and downwind from the burning was low during these conditions. However, it is recommended that crew on vessels close to and downwind of smoke plumes from oil fires should use half-masks with P3 filters.


Subject(s)
Air Pollutants , Fires , Occupational Exposure , Petroleum Pollution , Air Pollutants/adverse effects , Air Pollutants/analysis , Humans , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Petroleum Pollution/analysis , Ships
2.
Environ Res ; 205: 112419, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34822858

ABSTRACT

In situ burning (ISB) is an oil spill response technique including ignition and burning to remove oil on the water surface. The technique rapidly and effectively removes large portions of the oil. However, the combustion process causes a large smoke plume and leaves a viscous residue in the water. During six large-scale experimental burns in the North Sea in 2018 and 2019, the smoke plume, released oil and contained residues were analysed. The objectives were to document the content of particles and gases in the smoke plume, properties of both the released oils and residues, and the effectiveness of the burns. Oseberg crude oil, Ultra Low Sulphur Fuel Oil (ULSFO), Intermediate Fuel Oil (IFO180) and Marine Gas Oil (MGO) were released into a fire-boom and ignited. Particles and gases in the smoke plume were monitored using drones with several sensors. Soot particle monitoring indicated that more than 90% of the particles produced during the burns were <1 µm. Soot fallout was mainly limited to visible smoke, and the particle concentration was highest directly under the smoke plume and declined with distance from the burn. Gas monitoring in the smoke indicated low concentrations of SO2 and NOX (<2 ppm), and the concentrations of CO2 and CO were within air quality standards. Black Carbon produced relative to the amount of oil burned was 10-18%. The burn efficiency varied and were estimated to 80-91% for Oseberg, >90% for MGO, and <60% for both ULSFO and IFO180. The present paper addresses the results of the smoke plume monitoring, properties of the ISB residues and the burn efficiency.


Subject(s)
Air Pollutants , Air Pollution , Burns , Petroleum Pollution , Petroleum , Air Pollutants/analysis , Air Pollution/analysis , Humans , Oils/analysis , Petroleum/analysis , Petroleum Pollution/analysis
3.
Ecotoxicol Environ Saf ; 228: 113013, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34839140

ABSTRACT

Oil spill clean-up measures using in situ burning can potentially result in seafloor contamination affecting benthic organisms. To mimic realistic exposure and measure effects, ovigerous Northern shrimp were continuously exposed for two weeks to the water-soluble fraction of oil coated on gravel followed by two weeks in clean seawater. North Sea crude oil (NSC) and field generated in situ burn residue (ISBR) of NSC were used (Low: 3 g/kg gravel, Medium: 6 g/kg gravel and High: 12 g/kg gravel). The concentrations of polyaromatic hydrocarbons (PAHs) in the water resulting from NSC were higher compared to ISBR. No mortality was observed in any treatment and overall moderate sublethal effects were found, mostly after exposure to NSC. Feeding was temporarily reduced at higher concentrations of NSC. PAH levels in hepatopancreas tissue were significantly elevated following exposure and still significantly higher at the end of the experiment in NSCHigh and ISBRHigh compared to control. Mild inflammatory response reactions and tissue ultrastructural alterations in gill tissue were observed in both treatments. Signs of necrosis occurred in ISBRHigh. No change in shrimp locomotory activity was noted from NSC exposure. However, ISBR exposure increased activity temporarily. Larvae exposed as pleopod-attached embryos showed significant delay in development from stage I to stage II after exposure to NSCHigh. Based on this study, oil-contaminated seafloor resulting from in situ burning clean-up actions does not appear to cause serious effects on bottom-living shrimp.

4.
Mar Environ Res ; 168: 105314, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33839401

ABSTRACT

In situ burning (ISB) is an oil spill clean-up option used by oil spill responders to mitigate impacts on the marine environment. Despite advantages such as high efficiency and potential applicability for challenging areas such as the Arctic, the actual environmental side effects are still uncertain. Acute and sublethal effects of the water accommodated fractions (WAFs from 25 g oil/L seawater) of a pre-weathered North Sea crude (Oseberg Blend 200 °C+) and field generated ISB residue were evaluated on Northern shrimp (Pandalus borealis) larvae. The larvae were first exposed for 96 h to a serial dilution of seven concentrations, and then maintained for two weeks in clean seawater post-exposure. No acute (mortality) or sublethal effects (feeding, development, or growth) were detected in any of the ISB residue concentrations. Significant larvae mortality was found in the three highest concentrations of crude oil (96-h LC50:469 µg/L total petroleum hydrocarbon) but no sublethal effects were found in the surviving larvae post-exposure. This study indicates that applying ISB could mitigate acute impacts of spilled oil on shrimp larvae.


Subject(s)
Pandalidae , Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Animals , Larva , North Sea , Petroleum/toxicity , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...