Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Type of study
Language
Publication year range
1.
J Phys Chem Lett ; 12(27): 6439-6447, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34236194

ABSTRACT

Ultrafast manipulation of phase domains in quantum materials is a promising approach to unraveling and harnessing interwoven charge and lattice degrees of freedom. Here we find evidence for coupling of displacively excited coherent acoustic phonons (CAPs) and periodic lattice distortions (PLDs) in the intensely studied charge-density-wave material, 1T-TaS2, using 4D ultrafast electron microscopy (UEM). Initial photoinduced Bragg-peak dynamics reveal partial CAP coherence and localized c-axis dilations. Weak, partially coherent dynamics give way to higher-amplitude, increasingly coherent oscillations, the transition period of which matches that of photoinduced incommensurate domain growth and stabilization from the nearly-commensurate phase. With UEM imaging, it is found that phonon wave trains emerge from linear defects 100 ps after photoexcitation. The CAPs consist of coupled longitudinal and transverse character and propagate at anomalously high velocities along wave vectors independent from PLDs, instead being dictated by defect orientation. Such behaviors illustrate a means to control phases in quantum materials using defect-engineered coherent-phonon seeding.

2.
Biochem Biophys Res Commun ; 493(4): 1504-1509, 2017 12 02.
Article in English | MEDLINE | ID: mdl-28986260

ABSTRACT

Tau misfolding has been implicated in a variety of tauopathies, including Alzheimer's disease. The microtubule binding domain of tau consists of four repeat segments (R1-R4), and aggregation of these segments leads to the formation of neurofibrillary tangles. Previous studies indicate that misfolded tau associates with anionic phospholipid membranes, invoking structural transformations that could play a role in aggregation. Here, we investigated the role of membrane surface charge on the binding affinity of individual tau repeat segments, and whether these segments exhibit lytic activity. We quantified the thermodynamics of this process in terms of the affinity (Kd), enthalpy (ΔH), entropy (ΔS), and change in specific heat capacity (ΔCp). While neutral membranes exhibited weak interactions with each tau repeat segment, segments R2 and R3 exhibited relatively strong binding with anionic membranes with favorable ΔS and a negative value of ΔCp. Calcein leakage assays show that each repeat segment displays lytic activity, but only upon the interaction with anionic membranes. Taken together, these results distinguish the relative selectivity for anionic membranes by each repeat segment and the degree of membrane disruption that results.


Subject(s)
tau Proteins/chemistry , Amino Acid Sequence , Calorimetry/methods , Humans , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Protein Aggregation, Pathological , Protein Folding , Protein Interaction Domains and Motifs , Repetitive Sequences, Amino Acid , Tauopathies/etiology , Tauopathies/genetics , Tauopathies/metabolism , Thermodynamics , tau Proteins/genetics , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...