Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 440(7082): 315-8, 2006 Mar 16.
Article in English | MEDLINE | ID: mdl-16541068

ABSTRACT

Systems of three interacting particles are notorious for their complex physical behaviour. A landmark theoretical result in few-body quantum physics is Efimov's prediction of a universal set of bound trimer states appearing for three identical bosons with a resonant two-body interaction. Counterintuitively, these states even exist in the absence of a corresponding two-body bound state. Since the formulation of Efimov's problem in the context of nuclear physics 35 years ago, it has attracted great interest in many areas of physics. However, the observation of Efimov quantum states has remained an elusive goal. Here we report the observation of an Efimov resonance in an ultracold gas of caesium atoms. The resonance occurs in the range of large negative two-body scattering lengths, arising from the coupling of three free atoms to an Efimov trimer. Experimentally, we observe its signature as a giant three-body recombination loss when the strength of the two-body interaction is varied. We also detect a minimum in the recombination loss for positive scattering lengths, indicating destructive interference of decay pathways. Our results confirm central theoretical predictions of Efimov physics and represent a starting point with which to explore the universal properties of resonantly interacting few-body systems. While Feshbach resonances have provided the key to control quantum-mechanical interactions on the two-body level, Efimov resonances connect ultracold matter to the world of few-body quantum phenomena.

2.
Phys Rev Lett ; 92(17): 173003, 2004 Apr 30.
Article in English | MEDLINE | ID: mdl-15169144

ABSTRACT

We report on the creation of a two-dimensional Bose-Einstein condensate of cesium atoms in a gravito-optical surface trap. The condensate is produced a few microm above a dielectric surface on an evanescent-wave atom mirror. After evaporative cooling by all-optical means, expansion measurements for the tightly confined vertical motion show energies well below the vibrational energy quantum. The presence of a condensate is observed in two independent ways by a magnetically induced collapse at negative scattering length and by measurements of the horizontal expansion.

3.
Phys Rev Lett ; 90(17): 173001, 2003 May 02.
Article in English | MEDLINE | ID: mdl-12786069

ABSTRACT

A dense gas of cesium atoms at the crossover to two dimensions is prepared in a highly anisotropic surface trap that is realized with two evanescent light waves. Temperatures as low as 100 nK are reached with 20,000 atoms at a phase-space density close to 0.1. The lowest quantum state in the tightly confined direction is populated by more than 60%. The system provides atoms at a mean distance from the surface as low as 1 microm, and offers intriguing prospects for future experiments on degenerate quantum gases in two dimensions.

SELECTION OF CITATIONS
SEARCH DETAIL
...