Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Public Health ; 2022: 2941013, 2022.
Article in English | MEDLINE | ID: mdl-36203504

ABSTRACT

Foundational high-resolution geospatial data products for population, settlements, infrastructure, and boundaries may greatly enhance the efficient planning of resource allocation during health sector interventions. To ensure the relevance and sustainability of such products, government partners must be involved from the beginning in their creation, improvement, and/or management, so they can be successfully applied to public health campaigns, such as malaria control and prevention. As an example, Zambia had an ambitious strategy of reaching the entire population with malaria vector control campaigns by late 2020 or early 2021, but they lacked the requisite accurate and up-to-date data on infrastructure and population distribution. To address this gap, the Geo-Referenced Infrastructure and Demographic Data for Development (GRID3) program, Akros, and other partners developed maps and planning templates to aid Zambia's National Malaria Elimination Program (NMEP) in operationalizing its strategy.


Subject(s)
Anopheles , Malaria , Animals , Humans , Malaria/epidemiology , Malaria/prevention & control , Mosquito Vectors , Zambia/epidemiology
2.
Remote Sens (Basel) ; 13(24)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-37425228

ABSTRACT

By 2050, two-thirds of the world's population is expected to be living in cities and towns, a marked increase from today's level of 55 percent. If the general trend is unmistakable, efforts to measure it precisely have been beset with difficulties: the criteria defining urban areas, cities and towns differ from one country to the next and can also change over time for any given country. The past decade has seen great progress toward the long-awaited goal of scientifically comparable urbanization measures, thanks to the combined efforts of multiple disciplines. These efforts have been organized around what is termed the "statistical urbanization" concept, whereby urban areas are defined by population density, contiguity and total population size. Data derived from remote-sensing methods can now supply a variety of spatial proxies for urban areas defined in this way. However, it remains to be understood how such proxies complement, or depart from, meaningful country-specific alternatives. In this paper, we investigate finely resolved population census and satellite-derived data for the United States, Mexico and India, three countries with widely varying conceptions of urban places and long histories of debate and refinement of their national criteria. At the extremes of the urban-rural continuum, we find evidence of generally good agreement between the national and remote sensing-derived measures (albeit with variation by country), but identify significant disagreements in the middle ranges where today's urban policies are often focused.

3.
Sci Data ; 6(1): 321, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31844062

ABSTRACT

While the population of the United States has been predominantly urban for nearly 100 years, periodic transformations of the concepts and measures that define urban places and population have taken place, complicating over-time comparisons. We compare and combine data series of officially-designated urban areas, 1990-2010, at the census block-level within Metropolitan Statistical Areas (MSAs) with a satellite-derived consistent series on built-up area from the Global Human Settlement Layer to create urban classes that characterize urban structure and provide estimates of land and population. We find considerable heterogeneity in urban form across MSAs, even among those of similar population size, indicating the inherent difficulties in urban definitions. Over time, we observe slightly declining population densities and increasing land and population in areas captured only by census definitions or low built-up densities, constrained by the geography of place. Nevertheless, deriving urban proxies from satellite-derived built-up areas is promising for future efforts to create spatio-temporally consistent measures for urban land to guide urban demographic change analysis.

4.
Data (Basel) ; 4(1)2019 Mar.
Article in English | MEDLINE | ID: mdl-37424897

ABSTRACT

India is the world's most populous country, yet also one of the least urban. It has long been known that India's official estimates of urban percentages conflict with estimates derived from alternative conceptions of urbanization. To date, however, the detailed spatial and settlement boundary data needed to analyze and reconcile these differences have not been available. This paper presents gridded estimates of population at a resolution of 1 km along with two spatial renderings of urban areas-one based on the official tabulations of population and settlement types (i.e., statutory towns, outgrowths, and census towns) and the other on remotely-sensed measures of built-up land derived from the Global Human Settlement Layer. We also cross-classified the census data and the remotely-sensed data to construct a hybrid representation of the continuum of urban settlement. In their spatial detail, these materials go well beyond what has previously been available in the public domain, and thereby provide an empirical basis for comparison among competing conceptual models of urbanization.

SELECTION OF CITATIONS
SEARCH DETAIL
...