Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Sci Adv ; 9(27): eadh1439, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37406121

ABSTRACT

As first demonstrated by Hanbury Brown and Twiss, it is possible to observe interference between independent light sources by measuring correlations in their intensities rather than their amplitudes. In this work, we apply this concept of intensity interferometry to holography. We combine a signal beam with a reference and measure their intensity cross-correlations using a time-tagging single-photon camera. These correlations reveal an interference pattern from which we reconstruct the signal wavefront in both intensity and phase. We demonstrate the principle with classical and quantum light, including a single photon. Since the signal and reference do not need to be phase-stable nor from the same light source, this technique can be used to generate holograms of self-luminous or remote objects using a local reference, thus opening the door to new holography applications.

2.
Opt Express ; 31(2): 2282-2291, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36785245

ABSTRACT

Hyperspectral imaging (HSI) has a wide range of applications from environmental monitoring to biotechnology. Conventional snapshot HSI techniques generally require a trade-off between spatial and spectral resolution and are thus limited in their ability to achieve high resolutions in both simultaneously. Most techniques are also resource inefficient with most of the photons lost through spectral filtering. Here, we demonstrate a proof-of-principle snapshot HSI technique utilizing the strong spectro-temporal correlations inherent in entangled photons using a modified quantum ghost spectroscopy system, where the target is directly imaged with one photon and the spectral information gained through ghost spectroscopy from the partner photon. As only a few rows of pixels near the edge of the camera are used for the spectrometer, effectively no spatial resolution is sacrificed for spectral. Also since no spectral filtering is required, all photons contribute to the HSI process making the technique much more resource efficient.

3.
Sci Rep ; 13(1): 1009, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36653398

ABSTRACT

We show a simple yet effective method that can be used to characterize the per pixel quantum efficiency and temporal resolution of a single photon event camera for quantum imaging applications. Utilizing photon pairs generated through spontaneous parametric down-conversion, the detection efficiency of each pixel, and the temporal resolution of the system, are extracted through coincidence measurements. We use this method to evaluate the TPX3CAM, with appended image intensifier, and measure an average efficiency of [Formula: see text]% and a temporal resolution of 7.3 ns. Furthermore, this technique reveals important error mechanisms that can occur in post-processing. We expect that this technique, and elements therein, will be useful to characterise other quantum imaging systems.

4.
Opt Express ; 31(26): 43574-43582, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38178450

ABSTRACT

Holography is an established technique for measuring the wavefront of optical signals through interferometric combination with a reference wave. Conventionally the integration time of a hologram is limited by the interferometer coherence time, thus making it challenging to prepare holograms of remote objects, especially using weak illumination. Here, we circumvent this limitation by using intensity correlation interferometry. Although the exposure time of individual holograms must be shorter than the interferometer coherence time, we show that any number of randomly phase-shifted holograms can be combined into a single intensity-correlation hologram. In a proof-of-principle experiment, we use this technique to perform phase imaging and 3D reconstruction of an object at a ∼3 m distance using weak illumination and without active phase stabilization.

5.
Phys Rev Lett ; 128(12): 120501, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35394321

ABSTRACT

We propose a quantum memory protocol based on trapping photons in a fiber-integrated cavity, comprised of a birefringent fiber with dichroic reflective end facets. Photons are switched into resonance with the fiber cavity by intracavity Bragg-scattering frequency translation, driven by ancillary control pulses. After the storage delay, photons are switched out of resonance with the cavity, again by intracavity frequency translation. We demonstrate storage of quantum-level THz-bandwidth coherent states for a lifetime up to 16 cavity round trips, or 200 ns, and a maximum overall efficiency of 73%.

6.
Opt Express ; 29(18): 28217-28227, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34614958

ABSTRACT

In this work we demonstrate spectral-temporal correlation measurements of the Hong-Ou-Mandel (HOM) interference effect with the use of a spectrometer based on a photon-counting camera. This setup allows us to take, within seconds, spectral temporal correlation measurements on entangled photon sources with sub-nanometer spectral resolution and nanosecond timing resolution. Through post processing, we can observe the HOM behaviour for any number of spectral filters of any shape and width at any wavelength over the observable spectral range. Our setup also offers great versatility in that it is capable of operating at a wide spectral range from the visible to the near infrared and does not require a pulsed pump laser for timing purposes. This work offers the ability to gain large amounts of spectral and temporal information from a HOM interferometer quickly and efficiently and will be a very useful tool for many quantum technology applications and fundamental quantum optics research.

7.
Opt Express ; 28(17): 24845-24853, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32907016

ABSTRACT

Wavelength-tunable, time-locked pairs of ultrafast pulses are crucial in modern-day time-resolved measurements. We demonstrate a simple means of generating configurable optical pulse sequences: sub-picosecond pulses are carved out from a continuous wave laser via pump-induced optical Kerr switching in 10 cm of a commercial single-mode fiber. By introducing dispersion to the pump, the near transform-limited switched pulse duration is tuned between 305-570 fs. Two- and four-pulse signal trains are also generated by adding birefringent α-BBO plates in the pump beam. These results highlight an ultrafast light source with intrinsic timing stability and pulse-to-pulse phase coherence, where pulse generation could be adapted to wavelengths ranging from ultraviolet to infrared.

8.
Opt Express ; 27(19): 26346-26354, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31674518

ABSTRACT

We examine the propagation of optical beams possessing different polarization states and spatial modes through the Ottawa River in Canada. A Shack-Hartmann wavefront sensor is used to record the distorted beam's wavefront. The turbulence in the underwater channel is analysed, and associated Zernike coefficients are obtained in real-time. Finally, we explore the feasibility of transmitting polarization states as well as spatial modes through the underwater channel for applications in quantum cryptography.

9.
Opt Lett ; 44(6): 1427-1430, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30874666

ABSTRACT

Optically induced ultrafast switching of single photons is demonstrated by rotating the photon polarization via the Kerr effect in a commercially available single-mode fiber. A switching efficiency of 97% is achieved with a ∼1.7 ps switching time and signal-to-noise ratio of ∼800. Preservation of the single-photon properties is confirmed by measuring no significant increase in the second-order autocorrelation function g(2)(0). These values are attained with only nanojoule-level pump energies that are produced by a laser oscillator with 80 MHz repetition rate. The results highlight a simple device capable of both high-bandwidth operations and preservation of single-photon properties for applications in photonic quantum processing and ultrafast time-gating or switching.

10.
Opt Lett ; 43(4): 907-910, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29444024

ABSTRACT

Photon pair sources have wide ranging applications in a variety of quantum photonic experiments and protocols. Many of these protocols require well controlled spectral correlations between the two output photons. However, due to low cross-sections, measuring the joint spectral properties of photon pair sources has historically been a challenging and time-consuming task. Here, we present an approach for the real-time measurement of the joint spectral properties of a fiber-based four wave mixing source. We seed the four wave mixing process using a broadband chirped pulse, studying the stimulated process to extract information regarding the spontaneous process. In addition, we compare stimulated emission measurements with the spontaneous process to confirm the technique's validity. Joint spectral measurements have taken many hours historically and several minutes with recent techniques. Here, measurements have been demonstrated in 5-30 s depending on resolution, offering substantial improvement. Additional benefits of this approach include flexible resolution, large measurement bandwidth, and reduced experimental overhead.

11.
Opt Lett ; 41(21): 5055-5058, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27805684

ABSTRACT

Optical quantum memories are an important component of future optical and hybrid quantum technologies. Raman schemes are strong candidates for use with ultrashort optical pulses due to their broad bandwidth; however, the elimination of deleterious four-wave mixing noise from Raman memories is critical for practical applications. Here, we demonstrate a quantum memory using the rotational states of hydrogen molecules at room temperature. Polarization selection rules prohibit four-wave mixing, allowing the storage and retrieval of attenuated coherent states with a mean photon number 0.9 and a pulse duration 175 fs. The 1/e memory lifetime is 85.5 ps, demonstrating a time-bandwidth product of ≈480 in a memory that is well suited for use with broadband heralded down-conversion and fiber-based photon sources.

12.
J Mod Opt ; 63(20): 2005-2028, 2016 Nov 12.
Article in English | MEDLINE | ID: mdl-27695198

ABSTRACT

Quantum light-matter interfaces are at the heart of photonic quantum technologies. Quantum memories for photons, where non-classical states of photons are mapped onto stationary matter states and preserved for subsequent retrieval, are technical realizations enabled by exquisite control over interactions between light and matter. The ability of quantum memories to synchronize probabilistic events makes them a key component in quantum repeaters and quantum computation based on linear optics. This critical feature has motivated many groups to dedicate theoretical and experimental research to develop quantum memory devices. In recent years, exciting new applications, and more advanced developments of quantum memories, have proliferated. In this review, we outline some of the emerging applications of quantum memories in optical signal processing, quantum computation and non-linear optics. We review recent experimental and theoretical developments, and their impacts on more advanced photonic quantum technologies based on quantum memories.

13.
Phys Rev Lett ; 117(7): 073603, 2016 Aug 12.
Article in English | MEDLINE | ID: mdl-27563963

ABSTRACT

Quantum interference of single photons is a fundamental aspect of many photonic quantum processing and communication protocols. Interference requires that the multiple pathways through an interferometer be temporally indistinguishable to within the coherence time of the photon. In this Letter, we use a diamond quantum memory to demonstrate interference between quantum pathways, initially temporally separated by many multiples of the optical coherence time. The quantum memory can be viewed as a light-matter beam splitter, mapping a THz-bandwidth single photon to a variable superposition of the output optical mode and stored phononic mode. Because the memory acts both as a beam splitter and as a buffer, the relevant coherence time for interference is not that of the photon, but rather that of the memory. We use this mechanism to demonstrate nonclassical single-photon and two-photon interference between quantum pathways initially separated by several picoseconds, even though the duration of the photons themselves is just ∼250 fs.

14.
Nat Commun ; 7: 11200, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-27045988

ABSTRACT

The spectral manipulation of photons is essential for linking components in a quantum network. Large frequency shifts are needed for conversion between optical and telecommunication frequencies, while smaller shifts are useful for frequency-multiplexing quantum systems, in the same way that wavelength division multiplexing is used in classical communications. Here we demonstrate frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory. Heralded 723.5 nm photons, with 4.1 nm bandwidth, are stored as optical phonons in the diamond via a Raman transition. Upon retrieval from the diamond memory, the spectral shape of the photons is determined by a tunable read pulse through the reverse Raman transition. We report central frequency tunability over 4.2 times the input bandwidth, and bandwidth modulation between 0.5 and 1.9 times the input bandwidth. Our results demonstrate the potential for diamond, and Raman memories in general, as an integrated platform for photon storage and spectral conversion.

15.
Opt Lett ; 40(6): 922-5, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25768147

ABSTRACT

Quantum photonics offers much promise for the development of new technologies. The ability to control the interaction of light and matter at the level of single quantum excitations is a prerequisite for the construction of potentially powerful devices. Here we use the rotational levels of a room temperature ensemble of hydrogen molecules to couple two distinct optical modes at the single photon level using femtosecond pulses with 2 THz bandwidth. We observe photon correlations that violate a Cauchy-Schwarz inequality, thereby verifying the creation of a nonclassical state. This work demonstrates the rich potential of molecules for use in ultrafast quantum photonic devices.

16.
Phys Rev Lett ; 114(5): 053602, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25699439

ABSTRACT

We report the storage and retrieval of single photons, via a quantum memory, in the optical phonons of a room-temperature bulk diamond. The THz-bandwidth heralded photons are generated by spontaneous parametric down-conversion and mapped to phonons via a Raman transition, stored for a variable delay, and released on demand. The second-order correlation of the memory output is g((2))(0)=0.65±0.07, demonstrating a preservation of nonclassical photon statistics throughout storage and retrieval. The memory is low noise, high speed and broadly tunable; it therefore promises to be a versatile light-matter interface for local quantum processing applications.

17.
Phys Rev Lett ; 111(8): 083901, 2013 Aug 23.
Article in English | MEDLINE | ID: mdl-24010439

ABSTRACT

The unusual features of quantum mechanics are enabling the development of technologies not possible with classical physics. These devices utilize nonclassical phenomena in the states of atoms, ions, and solid-state media as the basis for many prototypes. Here we investigate molecular states as a distinct alternative. We demonstrate a memory for light based on storing photons in the vibrations of hydrogen molecules. The THz-bandwidth molecular memory is used to store 100-fs pulses for durations up to ~1 ns, enabling ~10(4) operational time bins. The results demonstrate the promise of molecules for constructing compact ultrafast quantum photonic technologies.

18.
Opt Express ; 21(24): 29350-7, 2013 Dec 02.
Article in English | MEDLINE | ID: mdl-24514488

ABSTRACT

Random number sequences are a critical resource in modern information processing systems, with applications in cryptography, numerical simulation, and data sampling. We introduce a quantum random number generator based on the measurement of pulse energy quantum fluctuations in Stokes light generated by spontaneously-initiated stimulated Raman scattering. Bright Stokes pulse energy fluctuations up to five times the mean energy are measured with fast photodiodes and converted to unbiased random binary strings. Since the pulse energy is a continuous variable, multiple bits can be extracted from a single measurement. Our approach can be generalized to a wide range of Raman active materials; here we demonstrate a prototype using the optical phonon line in bulk diamond.

19.
Faraday Discuss ; 142: 403-13; discussion 429-61, 2009.
Article in English | MEDLINE | ID: mdl-20151556

ABSTRACT

The dynamics of the excited state during the photoassociation of cold molecules from cold rubidium atoms is studied in a series of pump-probe experiments. Dipole transitions similar to those of the atoms are observed in the molecular signal. While such behaviour is characteristic of the long-range molecules, the photoassociation of bound molecules is confirmed in additional experiments. The pump-probe signal observed on a 250 ps time scale did not, however, reveal wavepacket oscillations predicted by theory. This result is discussed using numerical simulations of photoassociation and a modification to the current experiments that could lead to the detection of wavepacket dynamics is suggested.

SELECTION OF CITATIONS
SEARCH DETAIL
...